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preface 

This book has grown out of a series of columns that. I have 
been writing for over a year in the TRS-80 MONTHLY NEWS 
MAGAZINE (originally called the TRS-80 MONTHLY NEWSLETTER), 
published by H & E Computronics. Although the columns began 
as an attempt to explain various aspects of assembly-language 
programming to beginners, it gradually became clear to me that 
the incorporation of this material into a single volume would 
be more attractive and useful for most readers. 

Both beginners and experienced programmers have good reason 
to be dissatisfied with the material on assembly•-language 
programming that has appeared thus far. Most of it is lacking 
in some of the essential details that you need to know in 
order to understand and to use the TRS-80, and much of this 
literature is very poorly written. 	While there are some 
aspects of the TRS-80 that are still not covered in this book, 
such as details about the Level II Basic interpreter, it 
contains most of the information that you need to know in 
order to develop assembly-language programs, and the book 
itself presents numerous practical programs and subroutines 
that have been fully tested. It also includes many of those 
"secrets" of the ROM and the Disk Operating Systems that you 
need to know in order to comprehend fully what goes on inside 
the TRS-80. 

I would like to express my gratitude to several people who 
have helped in the realization of this book: 	to Howard 
Gosman, publisher of the TRS-80 MONTHLY NEWS MAGAZINE, where 
the columns first appeared; to John Harding, who provided the 
encouragement needed to develop the columns into a book. 
Thanks also go to Emory Cook, who gave me many helpful 
suggestions. 	I am also grateful to the numerous readers who 
have provided both criticism and ideas for further pursuit. 

Hubert S. Howe, Jr. 
New City, New York 
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Li 

1.1 What is Machine Language? 

This is a book that has been written in order to explain 
machine language or assembly-language programming for the 
TRS-80 microcomputer to beginners. It is assumed that you 
have some familiarity with Level II Basic, and that you will 
have access to a TRS-80 with at least 16K memory and Level II 
Basic in order to try out programming ideas and examples of 
machine code introduced in different chapters. 

If you are familiar with Basic, you are probably aware that 
the instructions you write in a Basic program are not the same 
as what the machine actually executes. Your statements are 
decoded in a rather complicated way, and instructions that 
carry out the actions you have directed the machine to perform 
are executed for you. Basic itself is a program called an 
"interpreter" that is written in the machine language of the 
Z-80 microprocessor, which is the heart of the TRS-80. 
"machine language" refers to a program, like Basic, that is 
actively running inside a computer. 	"Assembly language" 
refers to another program that you run called an "assembler" 
that takes individual instructions written in symbolic form 
and converts them into machine language. 

All computers execute machine language and ONLY machine 
language. 	Any other way of interacting with the computer 
merely involves providing data to a program running in the 
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machine. 	You may never be aware of what the language is, and 
for many situations it would make no difference. In general, 
the higher the level of the language being employed by the 
computer, the further removed it is from the machine language. 
The problem with this process is that it takes longer and 
longer for the computer to execute each basic operation you 
specify. 	The execution of one line in a Basic program may 
require millions or even billions of machine operations. 

When you write a program in assembly language, you are 
taking advantage of the computer's internal structure so that 
what you write can be executed much more efficiently than 
instructions in symbolic languages. Execution efficiency is 
not the only advantage, however. It is also true that what 
the program can do may often be more extensive or elegant than 
what programs in higher-level languages can do. 

The disadvantage of machine language programming is that 
you have to understand the structure of the computer in detail 
to get it to work for you. A single error can cause an entire 
program that works in every other respect not just to 
malfunction, but to do disastrous things like erase itself 
from memory. 	Machine-language programming can be messy, 
requiring that you remember what is happening within every 
single register of the CPU and other things that you would not 
ordinarily think about. But it can be very rewarding, both in 
terms of performing useful tasks efficiently and in terms of 
the understanding and insight you can gain into the machine 
through writing a successful program. 

In this book, in addition to assuming that you have at 
least a 16K Level II TRS'-80 computer, we will also assume that 
you have Radio Shack's Editor/Assembler program (catalog 
number 26-2002), or an equivalent assembler such as Apparat's 
EDTASM that comes with NEWDOS+. The Editor/Assembler program 
will enable you to assemble programming code discussed in the 
book by yourself. If you don't have an assembler, in many 
cases you can still POKE program code into memory, or you 
might even get by with a machine language monitor program 
(such as my own Monitors #3 or #4). These allow you to enter 
values into memory one byte at a time. 	In any event, the 
content of this book will become clear to you much faster if 
you can try out the examples given by assembling them on your 
own computer. 

To understand machine language, it is essential that you 
understand the Z-80 microprocessor and the memory of the 
TRS-80. The Z-80 is the microprocessor around which the 
TRS-80 is built. Manufactured by Zilog, Inc., it is one of a 
number of popular microprocessors including the 8080 and the 
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8008, both manufactured by Intel. The Z-80 does everything 
that they do and more. 

1.2 Basic Components of the Computer 

Every computer consists of three basic components: 	the 
CENTRAL PROCESSING UNIT, abbreviated CPU, which for the TRS-80 
is the Z-80 microprocessor; a MEMORY, usually indicated as 
some quantity of "K", where K equals 1024; and INPUT-OUTPUT 
DEVICES, by which the computer communicates with the outside 
world and vice-versa. You are no doubt familiar with most of 
the input-output devices of the TRS-80, and if you don't have 
all of them, you have surely seen them in Radio Shack 
brochures or in stores. Everyone who has a TRS-80 has a video 
monitor, keyboard, and cassette recorder. The video monitor 
is an output device that actually displays a small portion of 
memory. 	The keyboard, which you use to feed data into the 
machine, is an input device. The cassette is used both for 
input and for output. 	Other devices include floppy disk 
drives, printers, and a variety of specialized equipment such 
as the RS-232 interface and voice synthesizer. 

1.3 The Memory of the TRS-80 

The memory of the TRS-80 is contained in both the keyboard 
case and the expansion interface. You are no doubt aware that 
memory is not free, and so the amount of memory you have 
depends on how much you have purchased. 	The basic unit of 
memory in the TRS-80 is the BYTE, a number consisting of 8 
bits or binary digits. A byte is capable of storing values 
only between 0 and 255; all larger numbers must therefore be 
contained in multiples of bytes. The largest value that can 
be contained in a two-byte number is 65,535, and this number 
is exactly the amount of memory that can be attached to the 
Z-80 microprocessor. Each memory location is designated by a 
two-byte number called its ADDRESS. Since the zero value is 
used to indicate the first location, there are a total of 
65,536 locations. In computer jargon, "K" indicates 1024 (2 
to the tenth power) rather than 1000. Thus, the TRS-80 can 
address a total of 64K bytes. 

There are three different kinds of memory used in the 
TRS-80. First is the ROM or "read-only memory". Values can be 
read out of ROM but not written into it, to prevent accidental 
data destruction. ROM contains the Basic interpreter, which 
is always there as soon as you power up the computer. When 
you write a Basic program, it is actually data used by the ROM 
program. 	The LOWER 12K bytes of memory are reserved for ROM. 
0 to 4095 (4K) is used for Level I, and 0 to 12,287 	(12K) 	is 
used for Level II. 
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The second kind of memory used by the TRS-80 is RAM or 
"random access memory". 	Numbers can be read or written in 
RAM. RAM is used for your programs and data, but not all of 
it is available to you. With a Level II computer, the first 
822 locations are used by the system for a number of special 
purposes that will be explained in detail in chapter 5. (With 
Disk Basic, the first 10K of RAM is used!) 	The TRS-80 uses 
only the upper 48K locations, 16,384 through 65,535, for RAM. 
This is why the maximum RAM you can purchase is 48K. 	If you 
have 4K RAM, it is located at 16,384 through 20,479; 16K runs 
through 32,767, and 32K through 49,152. 

That still leaves 4K. The area between 12,288 and 16,383 
is used for MEMORY-MAPPED input-output devices. The upper 1K 
(15,360 through 16,383) is used for the video display. What 
you see on the video display is actually what' is stored in 
this portion of memory. 14,336 through 14,464 is used for the 
keyboard. The rest of this region is reserved for other 
purposes, and only a few locations have actually been 
implemented at this time. 

The fact that the video display is memory-mapped means that 
anything you put into these locations is immediately sent to 
the display. You can try running the following Level II Basic 
program to test this out: 

10 INPUT A 
20 CLS 
30 FOR 1=15360 TO 16383 
40 POKE I,A 
50 NEXT I 
60 GOTO 10 

"A" must be a value between 0 and 255 (the maximum value that 
can be contained in a byte). Then look at Appendix C of the 
LEVEL II BASIC REFERENCE MANUAL (Control, Graphics, and ASCII 
codes). You will find that the number you input corresponds 
to the code that is printed across the entire screen; but 
when the program finishes, the question mark asking you to 
input a new value is still at the upper left corner. Why? 

The reason is that you have not issued a "PRINT" statement, 
and have thus just bombed the video memory. Now you can see 
that the PRINT statement in Basic actually does much more than 
just print characters on the screen. It keeps track of where 
the cursor is located, and when you come to the bottom of the 
screen, it automatically scrolls everything up to the next 
line, with the material at the top of the screen disappearing. 
In addition, it responds to a number of special characters 
called "control codes", which cause it to do such things as 
home the cursor, clear the screen, clear to the end of the 
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line, backspace, and so forth. If you had to work all this 
out every time you printed something, it would be a mess, and 
in this case you would also be duplicating a feature already 
implemented in the TRS-80's ROM. But now that you understand 
that this is all there is to it, you may not be afraid of 
working out your own display routine, if you have a reason to 
do things differently from the way they are handled in the 
ROM. 

1.4 Binary and Hexadecimal Numbers 

The basic unit of TRS-80's memory is the byte. The value 
contained in a specific byte, or the address where the byte is 
located, can be denoted in three different ways: 	as a 
DECIMAL, BINARY, or HEXADECIMAL number. We are most familiar 
with the decimal or base 10 number system, and that is the 
code that Radio Shack has used in the LEVEL II BASIC REFERENCE 
MANUAL. 	There is one important difference between the use of 
these numbers in Basic and our ordinary use of them: 	in 
Basic, the comma is used as a separator. Thus, if we write 
"16,383" in a Basic program, it would actually indicate two 
numbers, 16 and 383. To indicate this quantity as one number, 
we must write "16383". 	To avoid this confusion, we will 
henceforth always write out five-digit or longer decimal 
numbers without commas. 

In a decimal number, each digit represents a value 
multiplied by a power of 10. 	For example, the number 934 
equals 9 times 100 plus 3 times 10 plus 4 times 1. In other 
number systems, the same relationship exists, except the 
digits represent powers of the base number. The digits of 
binary numbers represent powers of 2. In the binary number 
system, each binary digit or "bit" can indicate only a value 
of 0 or 1. Binary numbers require a great many digits to be 
written out. 	For example, 100000 binary equals 32 decimal. 
Binary numbers are nevertheless important because they 
indicate the way numbers are actually represented inside the 
computer. 

Because of the length of binary numbers, programmers have 
adopted the hexadecimal or base 16 number system. Since 16 is 
a power of 2 (the fourth), there is a direct relationship 
between binary and hexadecimal numbers: 	each hexadecimal 
digit indicates a 4-bit quantity. The value contained in any 
byte can be expressed in exactly two hexadecimal digits. 	In 
the hexadecimal system, each digit can express a value between 
0 and 15. The numerals 0 - 9 are used for those values, while 
the letters A - F are used for 10 - 15. It may be awkward to 
think of something like "FE" as a number, but it is much 
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easier to convert this number into binary form than the 
equivalent decimal number 254. 

To clarify the confusion resulting from the use of 
different number systems, a letter or subscript is sometimes 
appended to the number to indicate the number system. "B" 
indicates binary and "H" hexadecimal, and the absence of any 
letter indicates decimal. For example, both 100000B and 20H 
indicate 32. In this book, the H subscript will normally be 
appended to hexadecimal numbers unless it is supremely clear 
from the context that the discussion involves only hexadecimal 
numbers. This is a helpful convention because it is also used 
by the TRS-80 Editor/Assembler. 

(Programmers also sometimes employ another number system, 
the octal or base 8 system. It is similar to hexadecimal in 
that 8 is a power of 2 and each digit expresses a 3-bit 
quantity, and in some cases easier to recognize because only 
the numerals 0 - 7 are used. Octal is not used often with 
byte-addressing computers, and we will not use it in this 
book.) 

1.5 ASCII 

Everything inside the computer is indicated as a number. It 
is what the number represents that determines the difference 
between one thing and another. 	Numbers may represent 
instructions to the computer to perform specific actions (a 
program), values used in calculations (data), or characters to 
be printed (ASCII code). 

ASCII stands for "American Standard Code for Information 
Interchange". Formulated many years ago and now implemented 
in billions of dollars' worth of electronic equipment, it is 
the method by which all of the characters are represented 
numerically, whether entered from the keyboard or printed on 
the video display. Although ASCII is only a 7-bit code, 8-bit 
bytes are always used to hold the ASCII values within the 
TRS-80. Appendix C of the LEVEL II BASIC REFERENCE MANUAL 
lists the correspondences between the characters displayed and 
the numerical values. 	For example, 32 indicates a blank 
space, and 65 is the letter capital-A. Although the TRS-80 
can display only upper-case letters on its video monitor, it 
can input lower-case letters from the keyboard and hold them 
in memory. Lower-case letters are produced by holding down 
the shift key as you type a letter -- the reverse of a 
typewriter keyboard -- but you cannot know that they are 
lower-case letters because they are displayed as upper-case 
letters. Furthermore, if you type in a Basic program in lower 
case, it will be converted to upper case (although data values 
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used by Basic programs are not converted). The only 
discrepancy is with the "@" key. "PRINT @" used with a "shift 
@" will not work. 

The important point about upper and lower case is that the 
TRS-80 is fully capable of COMPUTING with lower-case letters; 
it merely can't DISPLAY them. 	As this is being written, 
several companies are offering lower-case modifications, and 
Radio Shack itself has just released its own lower-case 
modification which unfortunately is incompatible with both the 
other methods and software written for them. 

The 7-bit ASCII code has room for 128 values, but not all 
of these are used for displayable characters. The first 32 
values (0-31) are used for control codes, not all of which are 
implemented on the TRS-80. Since the 7-bit values are always 
kept in 8-bit bytes, that leaves room for 128 more values for 
other purposes, and these values (128-255) are used for space-
compression codes, tab codes, and graphics. 

1.6 Number Formats in Basic 

Although numerical values used in computer calculations appear 
to be the most straightforward kind of data, they are somewhat 
more complicated because most values require several bytes. 
Level II Basic has three kinds of numerical variables: 
integers, single-, and double-precision floating-point 
numbers. The simplest numbers are integers, which are held in 
two bytes or 16 bits. Because the first bit is used for the 
sign (plus is zero and minus is one), the maximum value of an 
integer is 32767. There is one funny thing about 2-byte 
integers, which is also true of all 2-byte values in the Z-80: 
the two bytes are stored "backwards" in memory -- that is, the 
least-significant byte is stored first, and the 
most-significant byte last. 	To figure out what value is 
represented, the order must be reversed. The reason for this 
is simply that bytes were stored in this manner in the 8008 
and 8080, and the Z-80 maintains compatibility with these 
microprocessors. 

Single- and double-precision floating-point numbers are 
kept in groups of four and eight bytes, respectively. 	The 
whole manner in which these calculations are carried out 
inside the computer is very complicated, and will not be 
discussed in detail in this book. 	We will nevertheless 
explain more about them in chapters 10 and 11. 
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1.7 Analyzing Memory 

Since everything inside the TRS-80, or any computer, is stored 
in the form of 8-bit bytes, there is no way that you can know 
whether they represent a program, data, or ASCII code, without 
making an analysis, and this can be very complicated. To help 
with making such an analysis, there are programs you can 
purchase such as machine-language monitors or disassemblers. 
A disassembler is the reverse of an assembler: 	instead of 
assembling symbolic instructions into machine code, it 
"disassembles" machine code into symbolic instructions. 
Machine language monitors also provide commands for displaying 
the memory in ASCII form or as hexadecimal numbers. 

The first part of this book will be devoted to explaining 
the technical details about how the Z-80 microprocessor works 
and other necessary facts about the TRS-80. The second part 
will then be devoted to explaining practical problems that 
involve everyday applications for TRS-80 machine language 
programs. 



THE ARCHITECTUR 
OF THE Z-80 CPU 

2.1 Registers 

The Z-80 contains two sets of eight internal general-purpose 
registers, four 16-bit registers, and two special-purpose 
8-bit registers. A REGISTER is a memory location within the 
CPU where computation may be carried out. One of the two sets 
of eight general-purpose registers is called the MAIN REGISTER 
SET and the other is called the ALTERNATE REGISTER SET. The 
main set is what you always use in computations. 	The 
alternate set is accessed by only two instructions which 
exchange the contents of the main set with the alternate set. 
The general-purpose registers are called by the names A, F, B, 
C, D, E, H,• and L. A is also called the ACCUMULATOR, and it 
is the most important register in the computer, because it is 
where most of the action takes place. F is also called the 
FLAG register or FLAGS, because it is where bits indicating 
various conditions are kept. 	F itself is never used in 
computations. 	It is automatically set according to the 
RESULTS of other computations. 	The remaining registers B 
through L may be used either as 8-bit registers or in PAIRS 
for 16-bit quantities. In the latter case, B and C, D and E, 
and H and L are always used together, and, in such cases, are 
designated as BC, DE, and HL. Figure 2-1 shows a diagram of 
the registers in the Z-80 CPU. 

9 
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Figure 1: The registers in the Z-80 CPU 

Two of the 16-bit registers are called INDEX REGISTERS, 
designated IX and IY. 	They are used, more or less, as 
pointers to a memory location to which an offset value can be 
added or subtracted. 	The other two 16-bit registers are 
called the STACK POINTER and the PROGRAM COUNTER. The program 
counter, abbreviated PC, determines the order in which 
instructions are executed. 	When an instruction is being 
executed, the PC contains the address of the NEXT instruction 
to be executed. 	A branch or jump instruction actually 
modifies the PC. The stack pointer, SP, contains an address 
that must point to a free area in RAM that is used for 
temporary storage of values as the computer is running. If 
the stack ever gets destroyed, or if it points to an area in 
ROM or nonexistent memory, disaster can occur! The use of the 
stack pointer will be discussed in detail in chapter 4. 

The remaining 8-bit registers are called the interrupt (I) 
and refresh (R) registers. The refresh register makes it easy 
and practical to use low-cost dynamic RAM rather than static 
RAM in the computer. The latter RAM also produces 
significantly greater heat. 	(The TRS-80 uses dynamic RAM.) 
Otherwise, the refresh register is unimportant from the 
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programmer's standpoint. 	The interrupt register provides a 
more flexible system of interrupts for the Z-80 than the 8080. 
Interrupts, however, are used only for more advanced real-time 
programming and are beyond the scope of this book. 

Perhaps you are wondering about the differences between the 
Z-80 and the 8080 microprocessors. 	The 8080 has the same 
8-bit general registers as the Z-80, but no alternate register 
set. In addition, it has no index registers (IX or IY) nor 
the interrupt or refresh registers. The instruction set of 
the Z-80 will, therefore, be much larger than that of the 
8080, because it includes all of the instructions involving 
these registers. 	There are very few of the remaining 
instructions, however, that the 8080 does not also execute. 

In general, it is the programmer's responsibility to keep 
track of all the registers he is using and whether their 
contents can be changed without causing the program to produce 
an error. 	The contents of any register pair can easily be 
saved and retrieved, by being pushed onto or popped off the 
stack. 	This method can be used to free a register pair for 
use in a series of calculations without losing its value. One 
of the things that beginners often complain about with 
assembly-language programming is that it seems difficult 
because there are so many registers to keep track of. 
Actually, having many registers is an asset, and programming 
the computer is easier than it would be if there were fewer of 
them to look after! But there is nothing that you as a 
programmer can do to change the structure of the CPU, so the 
only thing to do is to learn how it works and take advantage 
of its inherent properties. 

2.2 Instruction Mnemonics and Operands 

In describing the instructions executed by nearly all 
computers, the term LOAD is used to indicate a transfer of 
data between a memory location and a register in the CPU. 
STORE indicates the opposite transfer, from a register to 
memory, and MOVE indicates a transfer of data from within the 
instruction itself (IMMEDIATE data) to a register. When Zilog 
designed the Z-80, they decided to scrap some of this 
terminology. All instructions that specify a transfer of data 
between a register and a memory location on the Z-80 are 
called LOAD instructions, abbreviated by the mnemonic LD. The 
direction of the transfer is indicated by the ORDER of the 
operands. 

If register A is loaded from location 100, this would be 
specified by the mnemonic: 
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LD 	A,(100) 

whereas if location 100 were loaded from register A, it would 
be: 

LD 	(100),A 

The parentheses around 100 are necessary to show that 100 is 
the ADDRESS of the memory location involved in the transfer. 
Lack of parentheses would indicate a move instruction: 

LD 	A,100 

means that A is loaded with the VALUE 100. (The fourth 
possibility in this progression, "LD 100,A" would be 
meaningless. It would indicate that the value 100 were loaded 
from A, but doing so might change "100" to some other value!) 

It is very important that you understand the meaning of the 
parentheses in these instructions, as this terminology is 
basic to descriptions of all instructions on the Z-80. 
Whenever parentheses enclose an operand in a Zilog mnemonic, 
it means that the operand specifies an address rather than a 
data value. An unparenthesized "HL" specifies the HL register 
pair, whereas "(HL)" indicates that the CONTENTS of HL specify 
an address which is involved in a data transfer. 

What is particularly confusing about this terminology is 
that the Z-80 was designed as an upgrading of the 8080 
microprocessor, so that it was 100 per cent compatible for 
executing 8080 instructions. Any 8080 program will run on the 
Z-80, and the Z-80 will do much more besides. But in order 
for people to transfer their programs to the Z-80, a whole new 
terminology had to be learned. This upset some people so much 
that they invented their own terminology, designed as 
extensions of the 8080's, and implemented it in assembler 
programs and documentation. Nowadays, however, most people 
use Zilog's terminology, recognizing that it is different from 
Intel's. (It has been rumored that Zilog had to invent a new 
set of mnemonics for legal reasons, because Intel had 
copyrighted its own.) For our purposes, one set of mnemonics 
is enough to learn, and the fact that Radio Shack has used 
Zilog's terminology throughout its documentation and the 
Editor/Assembler program more than tips the balance in that 
direction. 

2.3 Uses of the Registers 

The registers of the Z-80 CPU must always be considered in 
relation to the operations that can be carried out in them. 
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While there are many operations that can only be done in 
certain registers, there are many others that can be carried 
out in any register. 	A, the accumulator, is the most 
important register. 	All 8-bit arithmetic and logical 
operations involve the accumulator containing one of the 
operands and the result of the operation. In addition, some 
instructions that fetch or store a byte in memory only allow A 
to be used; getting the byte into or out of another register 
requires an additional operation. The flag register F is the 
other 'half" of the A register. By having F grouped with A in 
the CPU, all registers can be treated in two-byte groups. 

The HL register pair has two primary uses. First, it is 
the "accumulator" for 16-bit arithmetic operations. 	(There 
are no 16-bit logical operations.) 	All 16-bit arithmetic 
operations use HL as one of the operand registers and the 
result register. Second, HL can be used to contain an address 
pointing to a memory location whose contents are used in an 
8-bit operation. 	Whenever this is done, the operand is 
indicated as "(HL)". While the BC and DE register pairs can 
sometimes be used in this manner, there are many more Z-80 
instructions that involve (HL). (In 8080 mnemonics, 	(HL) 	is 
specified as M, meaning "memory".) 

Both the individual register B and the BC register pair are 
often used to hold a COUNT of the number of times something is 
to be repeated, so these are sometimes called the "count" 
registers. 	B is used as a count with the DJNZ instruction, 
the mnemonic for which is supposed to suggest the mellifluous 
phrase "decrement B and branch to the location specified if it 
is not zero". The BC register pair is used as a count for all 
block transfer instructions -- LDI, LDIR, etc. 	These 
operations are used to move an entire block of memory from one 
area to another, and they will be described in chapter 3. 
Finally, the C register is the only register used for certain 
input and output operations. 

The DE register pair has many uses analogous to HL and BC, 
except that there are fewer such instructions. Both (BC) and 
(DE) can be used to specify addresses like (HL), but only 
loading to or from the accumulator is possible. Thus, 

LD 	A,(DE) 
and 

LD 	(BC) ,A 

are legal, but not 

LD 	H,(BC) 

whereas 
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LD 	H,(HL) 

is legal. 

2.4 Flags 

The flag register F is never used to hold data. It contains 
several bits logically called "flags", that are set according 
to the RESULTS of other calculations. It is an eight-bit 
register, even though there are only six flags, and only four 
of these are really important for most programming 
applications. These four flags are called the ZERO flag (Z), 
the SIGN flag (S), the CARRY flag (C), and the PARITY/OVERFLOW 
flag (P/V). The other two flags, the HALF-CARRY flag (H) and 
the ADD/SUBTRACT flag (N), are used only with the DAA (decimal 
adjust accumulator) instruction, which is used only for BCD 
numbers, a relatively rare application. 

The carry flag C (not to be confused with register C!) 	is 
set whenever an add instruction produces a result that is one 
bit too large to be contained in a single register. 
Correspondingly, it is also set when a subtract operation 
produces a borrow. Since the Z-80 performs only addition and 
subtraction of 8-bit and 16-bit values, the carry flag is 
necessary not only for addition and subtraction of larger 
values, but also for implementing software routines for 
multiplication and division. 	These operations will be 
discussed in chapter 13. The carry flag is also affected by 
shift and rotate instructions, and it is cleared (set to zero) 
by logical operations. "No carry" is indicated "NC". 

The zero flag is set only if the result of an operation is 
zero. 	"Non zero" is indicated "NZ". The sign flag, which is 
indicated by the conditions plus (P) or minus (M), is a copy 
of the sign bit (7) of the accumulator. The zero, sign, and 
carry flags can also be set by compare instructions. The P/V 
flag, indicated by the conditions PE (parity even) or PO 
(parity odd), is used both for overflow conditions and to 
indicate parity, depending on the instruction. Overflow means 
that the result of an operation produced a value too large to 
be contained in the register, whereas parity means that the 
sum of the bits in the register is odd (PO) or even (PE). The 
flag is also used for other purposes, such as during the 
execution of block transfer instructions. 

Except for arithmetic, shift, and rotate instructions that 
use the carry flag, the flags are USED only by the jump, call, 
and return instructions. 	(They are SET by other 
instructions.) These are CONDITIONAL operations that are 
executed only if the condition they specify is true. 
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2.5 Addressing Modes 

Addressing modes summarize all the ways in which instructions 
may be executed on the computer. 	To perform any operation 
involving memory, the computer must know the address of the 
location involved. For convenience of programming, there are 
always many ways in which addresses may be specified. The 
ZILOG Z80-CPU TECHNICAL MANUAL gives ten addressing modes for 
the Z-80. They can be described as follows: 

(1) IMMEDIATE: A byte contained in the instruction is moved 
to a register. 
Instruction length = 2 bytes. 
Example: 	LD 	A,1 
A is loaded with the value 1. 

(2) IMMEDIATE EXTENDED: Same as above, except a two-byte 
value is moved to a register pair. 
Length = 3 bytes. 
Example: 	LD 	HL,1000 
The HL register pair is loaded with the value 1000. 

(3) RELATIVE: Applies only to the jump relative (JR) 
instructions. The value in the following byte is added 
to the location contained in the PC to determine the 
next address. The address indicated must lie in the 
range -128 to +127 bytes from the present instruction. 
Length = 2 bytes. 
Example: 	JR 	$+10 
("$" means "address of the current instruction".) Jumps 
to the location 10 bytes following the present one. 

(4) EXTENDED: The address of the operand is specified in 
the instruction. 
Length = 3 or 4 bytes. 
Example: 	LD 	A,(1000) 
A is loaded from location 1000. 

(5) INDEXED: The address of an operand is determined by 
adding a byte called a DISPLACEMENT to the value 
contained in an index register. 
Length = 3 or 4 bytes. 
Example: 	LD 	A,(IX+5) 
A is loaded from the location whose address is computed 
by adding 5 to the value in index register IX. 

(6) REGISTER: One register is loaded from another one. 
Length = 1 byte. 
Example: 	LD 	B,C 
B is loaded from C. 
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(7) zmYLIEn; Not really a different mode! This means that a 
register is not indicated in the mnemonic, but 
implied by it. 
Length: l or 2 bytes. 
Example: SUB a 
B is subtracted (from x, by implication). 

(8) REGISTER INDIRECT: The 	address of 	an 	operand is 
contained in a register pair (BC, DE, or HL). 
Length = l byte. 
Example: 	oz a,(eC) 
» is loaded from the location whose address is contained 
in the BC register pair. 

(9) Bzz; An individual bit in a register is set, reset, or 
tested. 
Length = 2 bytes. 
Example; SET 6,o 
Bit 6 in register a is set to l. 

(10) MODIFIED eaGa ZERO: Applies only to the restart (usc) 
instructions. 	only three azrS of the address are 
specified in the instruction itself. The address must 
be a multiple of O between 0 and 56. 
Length = I byte. 
Example: gST 8 
A call is made to location 8. 

2.6 Instruction Timing 

All microcomputers are run by means of a CLOCK which provides 
a basic frequency according to that instructions are executed. 
While the clock frequency of the o-80 can be as high as 4 MHz 
(millions of cycles per second), the TxS-80 uses a olvob 
frequency of approximately 1.77 max, corresponding to a period 
of 563 nanoseconds (billionths of a second). The z-80 CPU 
executes its instructions by going through a combination of a 
few basic operations. They include memory read or write, I/o 
device read or write, and interrupt acknowledge operations. 
Each of these may require from three to six clock periods, 
aUiou are referred to as z cycles. 	The basic operations 
themselves are referred to as m (machine) cycles. 

The zus-80 nozzoo aSsEmaLoo o8uo zwSTeunTznN MANUAL 
discusses each instruction of the x-80 separately, and 
provides information on the number of m and r cycles required. 
It also provides a figure of ^4 Mao o,z.^, meaning 4 oao 
execution time. This is misleading, because the TRG-80 does 
not run at 4 MHz (although the coS-80 Model II does). 
Instruction execution times in the manual must be multiplied 
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by approximately 2.26 in order to determine the actual TRS-80 
time. The manual shows execution times ranging from 1.0 to 
5.75 microseconds (millionths of a second), thus corresponding 
to 2.26 to 13 microseconds for the TRS-80. The fact that the 
TRS-80 can execute over 440,000 operations in one second is a 
true measure of its amazing computing power. 



OVERVIEW OF THE Zw80 
.C; ;RUCTION 

Once you are familiar with the registers and internal 
architecture of the Z-80 CPU, the next thing you probably are 
wondering about is the operations that the computer can 
execute. Our intention in this chapter is merely to give a 
summary of the instructions that the Z-80 can execute -- not 
to describe their operation in full. Complete tables of the 
Z-80 instructions are given in Appendix A. Since the really 
important point about assembly language programming is being 
able to write programs that DO something, it is better to 
study the function of individual instructions in the context 
of programming examples. 	The second part of this book is 
devoted to practical applications of TRS-80 assembly language 
programming. 

An operation executed by the computer may affect or be 
affected by three different types of items, which are 
specified as OPERANDS. Most operations involve the use of one 
or more REGISTERS. These include either the main register set 
(A, B, C, D, E, H, and L) and the index registers (IX and IY), 
which are the ones you normally think about, or the stack 
pointer (SP) and program counter (PC), which you may not think 
of as holding data as the others do. The Z-80 often treats 
the operand (HL), which refers to the memory location pointed 
to by the H and L register pair, as a single register 
analogous to one of the main registers, even though operations 
referring to (HL) are always listed as "separate" operations 
in the tables. The alternate register set is used by only two 

18 
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instructions -- 	EXX and EX AF,AF' -- which exchange their 
contents with the main register set. 	Any subsequent 
computations are carried out using the main registers only. 

The next type of operand might include one or more MEMORY 
LOCATIONS in the computer. 	A few instructions can affect 
entire blocks of data, but most affect only one or two bytes. 

The third type of operand includes the CONDITION CODES. 
Sometimes a condition code is indicated in the instruction 
itself, such as a jump on non-zero. At other times, one or 
more condition codes are set according to the results of 
computations carried out. It is the latter situation that is 
indicated in the instruction tables, since the instructions 
that use the condition codes do not alter them. 

Other information you might want to know about 	Z-80 
instructions includes how many bytes they occupy, how long 
they take to execute (in M or T cycles), and their object 
codes. 	We will refer to instruction times only by T cycles, 
which are 563 nanoseconds for the TRS-80 (250 nanoseconds for 
the TRS-80 model II). This value must be multiplied by the 
number of T cycles to determine the actual instruction time. 

Many people get confused by the concept of object code, 
thinking that there is some mysterious force inside the 
computer that causes it to run. 	Actually, it is just a 
succession of numbers stored in memory. 	Since a byte can 
contain 256 different values, you might think that there would 
be 256 Z-80 instructions. In fact, there are many more than 
this number because, the Z-80 has several different 
instruction formats requiring from one to four bytes. 	How 
many instruction there are depends on how you count. For 
example, "LD r,r'" which copies the contents of one register 
into another, is listed as one instruction; but when you 
consider that there are seven different registers that may 
occupy either position in the instruction, then there are 49 
instructions included under this one mnemonic. When you count 
instructions in this way, there are 666 of them for the Z-80. 

In Zilog's terminology, the ORDER of the operands indicates 
the function of the items involved in data transfer 
instructions. The first operand is the DESTINATION operand 
and the second is the SOURCE. For example, "LD A,B" indicates 
that B is copied into A, whereas "LD B,A" indicates that A is 
copied into B. 

If an operand is enclosed in parentheses, it means that the 
operand refers to the CONTENTS of a register or memory 
location. Unparenthesized operands denote either IMMEDIATE 
DATA or the ADDRESS of a memory location. 
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Z-80 instructions have been divided into eleven groups by 
the manufacturer ZILOG. Most books use this grouping as the 
point of departure for discussing the instructions, and we 
will do the same here. In our listings below, the following 
abbreviations will be used: 

✓ single register: A, B, C, D, E, H or L. 
IR 	index register: IX or IY. 
(IR+d) the contents of an address determined by 

adding a displacement byte (d) to an index 
register. 

s 	a single register operand, which may be 
any of the following: r, n, (HL), or (IR+d). 

dd 	double register: BC, DE, HL, or SP. 
qq 	double register: BC, DE, HL, or AF. 
pp 	double register: BC, DE, SP, and either IX 

or IY depending on the operation. 
n a single byte contained within the 

instruction itself. 
(n) 	in input and output instructions, a byte 

contained within the instruction, whose value 
selects an I/O port. 

nn 	two data bytes contained within the 
instruction itself. 

(nn) 	a two-byte value contained within the 
instruction, referring to a memory address. 

e in jump relative instructions, a value added 
to the current value of the PC to determine 
a branch address. 

p 	in RST (restart) instructions, address of the 
location called: a multiple of 8 between 0 
and 56. 
bit: 0, 1, 2, 3, 4, 5, 6, or 7. 

cc 	condition code: NZ, Z, NC, C, P0, PE, P, M. 
c 	condition code in jump relative instruction: 

NZ, Z, NC, or C. 
(HL) 	the contents of the memory location pointed 

by the HL register pair. Similar use is made 
of (BC) and (DE). 

I or R the Interrupt or refresh registers. 
<= 	This symbol is used to indicate that the 

operand on the right is copied to the operand 
on the left. 

.> 	This symbol is used in right shift and 
rotate instructions, to indicate that the 
operand on the left is copied to the operand 
on the right. 

<=> 	This symbol indicates that the two operands 
are exchanged or swapped. 

8080 	When indicated in a note field, this means 
that the instruction also exists on the 8080 
microprocessor. 
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3.1 Eight-Bit Load Group 

All the instructions in this group transfer (copy) one byte of 
data between two CPU registers, or between a CPU register and 
a single memory location. Confusingly, Zilog refers to all 
such instructions as "loading", whereas most computer 
manufacturers have used "load" only to refer to a transfer 
from memory to a register. Moving data from a register to 
memory is called "storing". 

Since 	none 	of 	these 	operands 	except 	LD A,I and LD A,R 
affect the condition codes, 	they 	are 	not 	mentioned 	in 	the 
table below. 

Length 	No. 	of T 
Instruction 	(Bytes) 	Cycles 	Notes 	Function 
LD 	r,r' 1 	4 8080 	r 	<= 	r'  
LD 	r,n 2 	7 8080 	r <= n 
LD 	r,(HL) 1 	7 8080 	r 	<= 	(HL) 
LD 	r,(IR+d) 3 	19 r 	<= 	(IR+d) 
LD 	(HL) ,r 1 	7 8080 	(HL) 	<= 	r 
LD 	(IR+d),r 3 	19 (IR+d) 	<= 	r 
LD 	(HL) ,n 2 	10 8080 	(HL) 	<= 	r 
LD 	A,(BC) 1 	7 8080 	A <= 	(BC) 
LD 	A,(DE) 1 	7 8080 	A <= 	(DE) 
LD 	A,(nn) 3 	13 8080 	A <= 	(nn) 
LD 	(BC),A 1 	7 8080 	(BC) 	<= A 
LD 	(DE),A 1 	7 8080 	(DE) 	<= A 
LD 	(nn) ,A 3 	13 8080 	(nn) 	<= A 
LD 	A,I 2 	9 1 	A <= I register 
LD 	A,R 2 	9 1 	A <= R register 
LD 	I,A 2 	9 I register <= A 
LD 	R,A 2 	9 R register <= A 

Notes: 

(1) 	Z 	and S flags 	set 	according to 	the 	results 	of the 
instruction. The 	interrupt enable flip/flop is copied 	to the 
P/V flag. 

3.2 Sixteen-Bit Load Group 

These instructions are similar to the eight-bit loads, except 
that sixteen bits of data are involved in the transfer. No 
condition codes are affected by these instructions. 
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Length 	No. of T 
Instruction 	(Bytes) 	Cycles 	Notes 	Function 
LD 	dd,nn 	3 10 8080 dd <= nn 
LD 	IR,nn 	4 14 IR <= nn 
LD 	HL,(nn) 	3 16 8080 HL <= 	(nn) 
LD 	dd,(nn) 	4 20 dd 	<= 	(nn) 
LD 	IR,(nn) 	4 20 IR <= 	(nn) 
LD 	(nn),HL 	3 16 8080 (nn) 	<= HL 
LD 	(nn),dd 	4 20 (nn) 	<= dd 
LD 	(nn),IR 	4 20 (nn) 	<= 	IR 
LD 	SP,HL 	1 6 8080 SP <= HL 
LD 	SP,IR 	2 10 SP <= IR 
PUSH 	qq. 	1 11 8080 (SP-2) 	<= 	qq(L) 

(SP-1) 	<= 	qq(H) 
0 SP <= SP-2 

PUSH 	IR 	2 15 (SP-2) 	<= 	IR(L) 
(SP-1) 	<= 	IR(H) 
SP <= SP-2 

POP 	qq 	1 10 8080 qq(H) 	<= 	(SP+l) 
qq(L) 	<= 	(SP) 
SP <= SP+2 

POP 	IR 	2 14 IR(H) 	<= 	(SP+l) 
IR(L) 	<= 	(SP) 
SP <= SP+2 

3.3 	Exchange and Block Transfer and Search Group 

These instructions really include two different groups: 
exchange instructions, which swap two sets of operands, a-d 
block transfer and search instructions, which move or compare 
large blocks of data. These will be described in more detail 
in later chapters, 	but 
presented here. 

Length 
Instruction 	(Bytes) 

	

a 	summary 	of 

	

No. 	of T 
Cycles 	Notes 

their 	operations 	is 

Function 
EX DE,HL 1 4 8080 DE <=> HL 
EX AF,AF' 1 4 AF <=> AF' 
EXX 1 4 BC <=> 	BC' 

DE <=> DE' 
HL <=> HL' 

EX (SP),HL 1 19 8080 H <=> 	(SP+1) 
L <=> 	(SP) 

EX (SP),IR 2 23 IR(1) <=> 	(SP+l) 
IR(2) <=> 	(SP) 

LDI 2 16 1 (DE) 	<= 	(HL) 
DE <= DE+l 
HL <= HL+1 
BC <= BC-1 
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Instruction (Bytes) Cycles Notes Function 
LDIR 	2 	21 if BC<>0 2 	(DE) <= (HL) 

16 if BC=0 DE <= DE+1 
HL <= HL+1 
BC <= BC-1 
Repeat till BC=0 

LDD 	2 	16 	1 	(DE) <= (HL) 
DE <= DE-1 
HL <= HL-1 
BC <= BC-1 

LDDR 	2 	21 if BC<>0 2 	(DE) <= (HL) 
16 if BC=0 DE <= DE-1 

HL <= HL-1 
BC <= BC-1 
Repeat till BC=0 

CPI 	2 	16 	3 	A compared to (HL) 
HL <= HL+1 
BC <= BC-1 

CPIR 	2 	21 if BC<>0 3 	A compared to (HL) 
and A<>(HL) 	HL <= HL+1 
16 if BC=0 BC <= BC-1 

0 	or A=(HL) 	Repeat till A=(HL) 
or BC=0 

CPD 	2 	16 	3 	A compared to (HL) 
HL <= HL-1 
BC <= BC-1 

CPDR 	2 	21 if BC<>0 3 	A compared to (HL) 
and A<>(HL) 	HL <= HL-1 
16 if BC=0 	BC <= BC-1 
or A=(HL) 	Repeat till A=(HL) 

or BC=0 

Notes: 
(1) P/V flag set according to result of operation. 

N and H set to zero. 

(2) P/V flag set to 0 at conclusion of operation. 
N and H set to zero. 

(3) P/V flag = 0 if result of BC-1=0, otherwise P/V=1. 
Z flag is 1 if A=(HL), otherwise 0. N set to 1. 
S and H flag set according to result of compare. 

3.4 Eight-Bit Arithmetic and Logical Group 

These instructions perform arithmetic and logical operations 
on single-byte quantities. 	Except for the increment and 
decrement instructions, all arithmetic is carried out only in 
the accumulator, although the operand A is not indicated in 
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some of the instruction mnemonics. Condition codes are set by 
every one of the operations, as explained in the notes. The 
symbol "CY" indicates the carry bit or C flag, which is used 
in certain arithmetic operations. The full range of 
instruction operands is shown only for the ADD instruction. 
The number of T cycles and condition codes for individual 
instructions of the other operations is the same as for the 
corresponding instruction shown for ADD. The logical 
operations AND, OR, and XOR are indicated by the words since 
the symbols do nt exist on the TRS-80's keyboard. 

Length 	No. of T 
Instruction (Bytes) Cycles Notes Function 
ADD A,r 1 4 8080,1 A <= A+ r 
ADD A,n 2 0 7 8080,1 A <= A+ n 
ADD A,(HL) 1 7 8080,1 A <= A + 	(HL) 
ADD A,(IR+d) 3 19 1 A <= A + 	(IR+d) 
ADC A,s 1-3 4-19 8080,1 A <= A + s + CY 
SUB s 1-3 4-19 8080,2 A <= A- s 
SBC A,s 1-3 4-19 8080,2 A <= A - s - CY 
AND s 1-3 4-19 8080,3 A <= A AND s 
OR s 1-3 4-19 8080,3 A <= A OR s 
XOR s 1-3 4-19 8080,3 A <= A XOR s 
CP s 1-3 4-19 8080,6 A- s 
INC r 1 4 8080,4 r <= r+ 1 
INC (HL) 1 11 8080,4 (HL) 	<= 	(HL) 	+ 	1 
INC (IR+d) 3 23 4 (IR+d) 	<= 	(IR+d)+1 
DEC r 1 4 8080,5 r <= r -1 
DEC (HL) 1 11 8080,5 (HL) 	<= 	(HL) 	- 	1 
DEC (IR+d) 3 23 5 (IR+d) 	<= 	(IR+d)-1 

Notes: 
(1) C, S, Z, and H set according to the result of the 
operation. 	The P/V flag contains the overflow of the result 
of the operation. N set to 0. 

(2) Condition codes set as in note 1, except N set to 1. IR 
instructions do not exist on the 8080. 

(3) S, Z, and H set according to the result of the operation. 
C and N set to zero. The P/V flag is set if the resulting 
parity is even, otherwise reset. 

(4) All codes set as in note 1, except C unaffected. 

(5) All codes set as in note 2, except C unaffected. 

(6) Compare operations perform a subtract but leave the 
operands unaffected, thus changing only the condition codes, 
which are set as in note 2. 
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3.5 General-Purpose Arithmetic and CPU Control Groups 

This group includes a bunch of miscellaneous instructions. 
The operation of the DAA instruction is too complicated to 
describu here, but will be explained in more detail below. 

Instruction 
DAA 

CPL 

NEG 

CCF 

SCF 
NOP 
HALT 

DI 
EI 
IM 0 
IM 1 
IM 2 

Notes: 

(1) C, Z, 

Length 
(Bytes) 

No. 	of T 
Cycles 

1 4 

1 4 

2 4 

1 4 

1 4 
1 4 
1 4 

0 
1 4 
1 4 
2 8 
2 8 
2 8 

S, P/V, and H flags 

Notes 	Function 
8080,1 	Decimal adjust 

accumulator 
8080,2 	Complement 

accumulator (one's 
complement: zeros 
changed to ones, 
ones to zeros. 

3 	Negate accumulator 
(two's complement) 

80(0,4 	Complement carry 
flag 

8080,5 	Set carry flag 
8080,6 	No operation 
8080,6 	CPU operation 

suspended 
8080,6 	Disable Interrupts 
8080,6 	Enable Interrupts 
6 	Interrupt mode 0 
06 	Interrupt mode 1 
6 	Interrupt mode 2 

set according to result of 
operation. P/V indicates parity. N unaffected. 

(2) C, Z, S, and P/V flags unaffected. N and H set to 1. 

(3) C, Z, S, P/V, and H flags set according to result of 
operation. P/V indicates overflow. N set to 1. 

(4) C set according to operation. Z, P/V, and S unaffected. 
H unknown, N set to 1. 

(5) C set to 1, N and H to 0. Z, P/V, and S unaffected. 

(6) No flags affected. 
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3.6 16-Bit Arithmetic Group 

These operations perform arithmetic calculations on 16-bit 
quantities. 	For most of the operations, the HL register pair 
is used as an "accumulator" just as the A register is used for 
the 8-bit operations. This means that HL is used to hold one 
of the operands, and it contains the result after the 
operation is executed. The index registers can also be used 
in this way for additions. 

Length 
	

No. of T 
Instruction (Bytes) Cycles Notes Function 

HL,ss 1 11 
HL,ss 2 15 
HL,ss 2 15 
IR,pp 2 15 
ss 1 6 
IR 2 10 
ss 1 6 
IR 2 10 

8080,1 	HL <= HL + ss 
2 	HL <= HL + ss + CY 
2 	HL <= HL - ss 	CY 
1 	IR <= IR + pp 
8080,3 	ss <= ss + 1 
3 	IR <= IR + 1 
8080,3 	ss <= ss - 1 
3 	IR <= IR - 1 

ADD 
ADC 
SBC 
ADD 
INC 
INC 
DEC 
DEC 

Notes: 
(1) C set according to the result of the operation. 	S, Z, 
and P/V unaffected. N set to 0, H unknown. 

(2) C, S, Z, and P/V set according to the result of the 
operation. P/V indicates overflow. N set to 0 for ADC, 1 for 
SBC. H unknown. 

(3) No flags affected. 	(N.B.) 

3.7 Rotate and Shift Group 

These instructions include a large number of operations that 
shift or rotate single registers. 	There are several 
redundancies among them, because the Z-80 executes both the 
8080 instructions, which use only the accumulator, and unique 
Z-80 instructions, which use every possible register. All 
shifts or rotates move the affected register by only one bit. 

A SHIFT operation moves each bit in a register to the next 
bit, in a left or right direction, and fills in the vacated 
bit with a zero. A ROTATE operation, of which there are far 
more than shifts, moves the bit shifted off the end around to 
the other side. 	All of this gets complicated by the way in 
which the carry bit participates in the operation. There are 
both 8-bit instructions, in which a bit is moved both into or 
out of the carry bit and into the register, and 9--bit 
instructions, in which the carry bit participates as if it 
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were an extra bit in the register. The N and H flags are 
reset by all of these instructions, and the P/V flag indicates 
parity. The operation of the RLD and RRD instructions, which 
are intended for BCD operations, are too complicated to 
describe here, but will be explained in more detail below. 

Length No. of T 
Instruction (Bytes) Cycles Notes 	Function  
RLCA 	1 	4 	8080,1 Rotate A lett circular 

CY & bit 0 <= bit 7 
RLA 	1 	4 	8080,1 Rotate left accumulator 

CY <= bit 7 
a bit 0 <= CY 

RRCA 	1 	4 	8080,1 Rotate A right circular 
bit 0 => CY & bit 7 

RRA 	1 	4 	8080,1 Rotate right accumulator 
bit 0 => CY 
CY => bit 7 

RLC r 	2 	8 	2 	Rotate left circular r 
(Same as RLCA, but for 
any register) 

RLC (HL) 	2 	15 	2 	Rotate left circular 
(HL) 

RLC (IR+d) 	2 	23 	2 	Rotate left circular 
(IR+d) 

RL 	s 	2 	8-23 	2 	Rotate left s (Same as 
RLA, but for any r, 
(HL), or (IR+d)) 

RRC s 	2 	8-23 	2 	Rotate right circular s 
(Same as RRCA but for 
any s) 

RR 	s 	2 	8-23 	2 	Rotate right s (Same as 
RRA but for any s) 

SLA s 	2 	8-23 	2 	Shift left arithmetic s 
CY <= bit 7 
bit 0 <= 0 

SRA s 	2 	8-23 	2 	Shift right arithmetic s 
bit 0 => CY 
bit 7 unchanged 

SRL s 	2 	8-23 	2 	Shift right logical s 
bit 0 => CY 
0 => bit 7 

RLD 	2 	18 	3 	Rotate digit left.  
RED 	2 	18 	3 	Rotate digit right 

Notes: 
(1) C set according to result of operation. S, Z, and P/V 
unaffected. 
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(2) C, Z, S, and g/V set according to result of operation. 

(3) x, S, and e/v set according to result of operation. C 
unaffected. 

3.8 Bit Set, Reset, and Test Group 

All of these operations exist only on the o-80 -- none on the 
8080. A BIT operation is a bit test for zero. GDr seta a bit 
to l; nBGur sets it to 0, 

Length No. of ? 
Instruction (Bytes) Cycles Notes Function 
BIT b,c 	2 	8 	l 	Bit b in register c 

tested 
BIT b,(oL) 	2 	12 	l 	Bit b in location 

(8L) tested 
BIT b,(Ia+d) 	4 	20 	I 	Bit b in location 

(Zu+d) tested 
SET b,c 	2 	8 	3 	Bit b in register r 

set to l 
SET b"(oL) 	2 	15 	3 	Bit b in (HL) set 
SET b,(In+d) 	4 	23 	2 	Bit b in (In+d) set 
8EG b,o 	2-4 	8-23 	3 	Bit b in s reset 

(s may be any c, 
(HL), or (IR+d)} 

Notes; 
(l) x set according to result of operation. C unaffected. 

S and p/V unknown. m set to 0, 8 to l. 

(2) No flags affected. 

3.9 Jump Group 

These instructions bcauob to a location specified, often 
depending on a particular condition. 	Sometimes the bcaunb 
address is contained within the instruction. In the case of 
jump relative instructions, the branch address is determined 
by adding a displacement value e to the current contents of 
the program counter. None of these instructions affects the 
condition codes. 
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Function 
JP nn 3 10 8080 PC <= 	nn 
JP cc,nn 3 10 8080 If cc true, 	PC <= nn 

Continue 	if cc 	false 
JR e 2 12 PC <= PC + e 
JR c,e 2 7 Continue 	if c false 

12 If c true, 
PC <= PC + e 

JP (HL) 1 4 8080 PC 	<= 	(HL) 
JP (IR) 2 8 PC 	<= 	(IR) 
DJNZ e 2 B <= B - 1 

8 If B = 0, 	continue 
13 If B<>0, 	PC <= PC+e 

3.10 Call and Return Group 

Call instructions push the present contents of the PC ont.o the 
stack and branch to a specified location. Return instructions 
pop the contents off the top of the stack and branch to the 
resulting location, thus resuming execution from the 
instruction immediately following the call. A restart 
instruction is identical to a call, except that the location 
called is specified in only three bits, and must lie within 
the first 64 bytes of memory. 	None of these instructions 
affects the condition codes. 

Length 	No. of T 
Instruction (Bytes) Cycles Notes Function 
CALL nn 3 17 8080 (SP-1) 	<= 	PC(H) 

(SP-2) 	<= 	PC(L) 
PC <= nn 

CALL cc,nn 3 10 8080 If cc 	false, 	continue 
17 If cc 	true, 

same as CALL 
RET 1 10 8080 PC(L) 	<= 	(SP) 

PC(H) 	<= 	(SP+1) 
RET cc 1 5 8080 If cc 	false, 	continue 

11 If cc 	true, 
same as RET 

RETI 2 14 Return from interupt 
(same as RET) 

RETN 2 14 Return from non-
maskable interrupt 

RST p 1 11 8080,1 (SP-1) 	<= 	PC(H) 
(SP-2) 	<= 	PC(L) 
PC(H) 	<= 	0 
PC(L) 	<= 	p 
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Notes: 
(1) p must be a multiple of 8 from 0 to 56. 

3.11 Input and Output Group 

These instructions transfer a byte of data between a CPU 
register and an external input/output device, accessed through 
an I/O port specified in the instruction. The symbol (n) 
indicates that the value n specifies the port, whereas (C) 
indicates that the port number is taken from register C. Some 
of these instructions transfer entire blocks of data at a 
time. 	Except for the 8080-compatible instructions, the 
contents of register B are placed on the top half of the 
address bus. This is a negligible factor for the TRS-80. 

Length 	No. of T 
Instruction (Bytes) Cycles Notes Function 
IN 
IN 
INI 

A,(n) 
r,(C) 

2 
2 
2 

11 
12 
16 

8080,1 
2 
3 

A <= 	(n) 
r 	<= 	(C) 
(HL) 	<= 	(C) 
B <= B-1 
HL <= HL+1 

INIR 2 21 if BC<>0 4 (HL) 	<= 	(C) 
16 if BC=0 B <= 8-1 

HL <= HL+1 
IND 2 16 3 (HL) 	<= 	(C) 

B <= B-1 
HL <= HL-1 

INDR 2 21 if BC<>0 4 (HL) 	<= 	(C) 
16 if BC=0 B <= B-1 

HL <= HL-1 
OUT (n),A 2 11 8080,1 (n) 	<= A 
OUT (C) ,r 2 12 1 (C) 	<= 	r 
OUTI 2 16 3 (C) 	<= 	(HL) 

B <= B-1 
HL <= HL+1 

OTIR 2 21 if BC<>0 4 (C) 	<= 	(HL) 
16 if BC=0 B <= B-1 

HL <= HL+1 
OUTD 2 16 3 (C) 	<= 	(HL) 

B <= B-1 
HL <= HL-1 

OTDR 2 21 if BC<>0 4 (C) 	<= 	(HL) 
16 if BC=0 B <= B-1 

HL <= HL-1 

Notes: 
(1) Condition codes unaffected. 
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(2) C unaffected. S, Z, P/V and H set according to result of 
operation. N set to 0. P/V indicates parity. 

(3) C unaffected, Z set according to result of operation. 
set to 1. P/V, S, and H unknown. 

(4) C unaffected. Z and N set to 1. Other flags unknown. 
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4.1 The Stack Area and Stack Pointer 

The STACK is an area in memory where data values from the CPU 
registers can be stored and retrieved. The STACK POINTER (SP) 
is a 16-bit register in the CPU that contains the address of 
the current location that is at the "top" of the stack. 	The 
need for a stack area may seem strange, since data may always 
be stored or retrieved by using the LD instructions. 	Many 
earlier computers did not have a stack area. Understanding 
the use of the stack is crucial to writing any assembly 
language program for the TRS-80, for if the stack or stack 
pointer ever yet destroyed, the entire computer will not run! 

The idea of having a general area in memory for storing and 
retrieving data is a good one, because the need to do this 
occurs so frequently when running a program. The stack does 
not ?ligayS reside at any particular area of memory. Where it 
is located is determined by the programmer, through the use of 
one of the load stack pointer instructions. 

The stack is organized as a "last in - first out" or LIFO 
system. When new values are "pushed" onto the stack, they are 
saved "backwards" in memory, and the stack pointer is 
decremented by 2. When values are "popped" out of the stack, 
the SP is incremented by 2. This is why the stack pointer 
usually points below its original value. 	Figure 4-1 
illustrates the way the stack works. 

32 
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Location 	Contents 	Comments 
7000 	F3 	Registers saved here if PUSH 
7001 	OE 	operation executed. 
7002 	14 	Current top of stack. Contents 
7003 	26 	moved to registers if POP executed. 
7004 	39 	Next level of stack after next POP 
7005 	8A 	executed. 
SP 	= 	7002 

	
Contents of stack pointer register. 

Figure 4-1: Registers are saved in the stack in a "backwards" 
order. 	In this example, the stack pointer SP contains 7002. 
If a PUSH or CALL operation is executed, register contents are 
saved at 7001 and 7000, and the SP is decremented by 2. If a 
POP or RET is executed, the contents of 7002 and 7003 are 
moved to registers, and the SP incremented by 2. 

4.2 PUSH and POP Instructions 

All uses of the stack are for double registers only. One of 
the primary uses of the stack is through the PUSH and POP 
instructions. PUSH saves the contents of a double register in 
the stack, and POP retrieves them. You can PUSH or POP AF, 
BC, DE, HL, IX, and IY. PUSH and POP instructions for the 
general registers require only one byte of memory (those for 
the index registers require two), and the execution of a PUSH 
or POP is always faster than a load referring to a memory 
location. 	When the values in a register pair are pushed onto 
the stack, the registers themselves are unchanged. 

Let us suppose, for example, that the SP contains 4288H. 
(The "H" appended to a number means that it is hexadecimal.) 
Upon executing a PUSH HL instruction, the computer saves 
register H in location 4287H, L in 4286H, and leaves the SP 
containing 4286H. 	As with all double register saves, the 
least-significant byte is followed in memory by the most-
significant byte. If this instruction were to be followed by 
a POP DE, E would be loaded from 4286H and D from 4287H, and 
the SP left pointing to 4288H. Thus, the stack pointer always 
contains the address from which data will be popped. 

4.3 Call and Return Instructions 

Another primary use of the stack pointer is with the CALL and 
RETURN instructions. 	(RETURN is abbreviated RET.) You are 
probably familiar with the concept behind CALLs and RETURNs 
from the GOSUB and RETURN statements in Basic. A SUBROUTINE 
is a portion of a program that can be entered from different 
locations, with the ability to return to the location 
immediately following the CALL when it is over. 	Whenever any 
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Z-80 instruction is being executed, the program counter (PC) 
points to the NEXT instruction in memory. 	Thus, when the 
computer encounters a CALL instruction, the PC contains the 
return address. What happens during a CALL is that the 
contents of the PC are pushed onto the stack, the SP is 
decremented by 2, and the computer branches to the location 
specified. 	When a RETURN is executed, the address is popped 
off the stack, the SP is incremented by 2, and the computer 
branches to the address. Naturally, if the stack area is used 
by the subroutine, the SP must be returned to its original 
value before the RETURN is executed. This is one way in which 
inexperienced programmers frequently make errors. 

Both the CALL and RET instructions of the Z-80 can be 
executed, unconditionally or conditionally, depending on the 
conditions NZ, Z, NC, C, PO, PE, P, and M. For example, CALL 
NZ,ADR would call the location named ADR only if the condition 
NZ were true, and RET NZ would return only on the same 
condition. These features greatly enhance the flexibility of 
subroutine usage with the Z-80. 

4.4 Restart Instructions 

The RST (restart) instructions are very similar to the CALL 
instructions. These one-byte instructions are, in effect, 
calls to locations 0 through 56 (38H) in multiples of 8. The 
reason for this limitation is that only 3 BITS of the address 
are included in the instruction itself. 	(A regular CALL 
requires 3 bytes, 2 of which contain the address called.) 
Unfortunately, these instructions are not as useful on the 
TRS-80 as they are on the Z-80 in general, because locations 0 
through 56 are in ROM (although calls to them are "vectored" 
out of ROM as explained in chapter 5). 	These locations are 
already used extensively by the Level I and Level II Basic 
interpreters. What you cannot do is write a new subroutine to 
be loaded into these memory locations. 

4.5 Miscellaneous Stack Instructions 

There are several miscellaneous instructions that use the 
stack pointer register or the value at the top of the stack. 
Three instructions, "LD SP,HL", "LD SP,IX", and "LD SP,IY", 
set the SP to some specific value taken from one of the other 
16-bit registers (HL, IX, or IY). "LD SP,nn" takes it from 
immediate data, and "LD SP,(nn)" takes it from a memory 
location. 	"LD (nn),SP" saves the value of the SP in a memory 
location. The operand SP refers to the ADDRESS of the stack 
area, whereas (SP) refers to the CONTENTS of the two locations 
at the top of the stack. "EX (SP),HL", "EX (SP),IX", and "EX 
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(SP),IY" swap the values at the top of the stack with the 
specified 16-bit registers. 	The SP itself is unchanged by 
these operations. °INC SP" increments the stack pointer, and 
"DEC SP" decrements it. The stack area is also used to save 
registers during interrupt processing, but we will not discuss 
that here. 

4.6 Subroutines 

The stack has numerous applications in practically every Z-80 
program. The most important of these is undoubtedly the 
establshment and use of subroutines. 	Subroutines should 
ALWAYS be used when a particular sequence of operations is to 
be repeated from more than one location within a program. The 
CALL to the subroutine and its associated RET require only 
four bytes and 27 machine cycles to execute. 	The only 
conditions that warrant not using a subroutine are that the 
operations require four bytes or less, or that the execution 
timing is so critical that you cannot spare the 27 machine 
cycles (about 15 microseconds). 

If you need to use a register in which to carry out some 
operation, but you also need to retain its present contents, 
you can PUSH it onto the stack and POP it off afterwards. For 
example, suppose that a subroutine needs to use HL as a 
scratch register, but needs to return with the present 
contents of HL unchanged. There are two general solutions to 
this problem: 

CALL SUB 

SUB PUSH HL'  

POP 	HL.  
RET 

or: 

PUSH HL 
CALL SUB 
POP 	HL_ 

In other words, the PUSH and POP can occur either in the 
subroutine (usually preferable, since the registers will be 
saved for any call) or in the calling program, but they must 
occur at the same program level. What you must NOT do is the 
following: 
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PUSH HL 
CALL SUB 

SUB POP HL 

or: 

CALL SUB 
POP 	HL 

SUB PUSH HL 

In these examples, the SP gets confused because the PUSH 
and POP do not occur at the same level. The first example 
POPs the return address off the stack rather than the previous 
contents of HL, and the second pushes HL onto the stack, so 
that the program will "return" to the address specified by HL 
rather than the calling location. Of course, these 
programming techniques can be used if the programmer 
understands what is happening and takes that into account when 
writing the program, so that something he intends to happen 
occurs. The point is that these are not proper procedures for 
storing and retrieving registers. 

Another use of PUSH and POP is simply to transfer data from 
one register pair to another. The following two sequences of 
instructions produce the same result: 

PUSH DE 
POP 	HL 

and: 

LD 	H,D 
LD 	L,E 

Both require two bytes, and, although the latter method 
requires only 8 T cycles and the former 22, programmers are as 
likely to use one method as the other. Using PUSH and POP 
also allows data to be transferred to and from the index 
registers, and it allows access to the flags for such purposes 
as printing them. 

If several registers are PUSHed at the beginning of a 
subroutine, they must he POPped at the end in REVERSE order; 
otherwise the data will not go back into the same registers. 
The following sequence shows the correct procedure: 
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SUB PUSH AF 
PUSH BC 
PUSH DE 
PUSH HL 

	

POP 	HL 

	

POP 	DE 
POP BC 
POP AF 
RET 

None of the stack operations affects the condition codes 
except for POP AF, which loads the flag register with an 
entirely different set of conditions. Therefore, the values 
of registers can be restored before a conditional operation, 
as in the following sequence: 

PUSH DE 	;save D (and E) 
LD 	D,(TST) ;load D from TST 
CP 	D 	;compare A to D 
POP 	DE 	;restore DE to previous values 
CALL Z,SUB ;call if compare equal 

(In assembly code, anything following a semi-colon is taken to 
be a comment.) This small portion of a pragram saves D and E 
in the stack and then loads D from a location called TST. 
This is compared to the accumulator, and then registers D and 
E are popped back off the stack. The CALL is executed only if 
the compare was equal, but by the time the CALL occurs, D and 
E have been restored to their previous values. 

Since all subroutines use the same stack area, any time a 
RET is executed it will branch to the address at the top of 
the stack, regardless of which program executed the last. CALL. 
Assuming that SUB2 is a subroutine that ends in a RET (as all 
subroutines do), the following program sequences are 
identical: 

SUB1 
CALL SUB2 
RET 

and: 

SUB1 
JP SUB2 

The first SUB1 sequence CALLS SUB2; SUB2 does its thing and 
returns to SUB1; and SUB1 returns to the calling program. 
The second SUB1 sequence ends by jumping to SUB2; when SUB2 
returns, it goes back to the program that called SUB1. 
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What happens if a program tries to call itself? 	Imagine 
this: 

5000 CALL 5000 

Location 5000 contains the first byte of an instruction 
that calls location 5000! When executed, 5003 (the return 
address) is pushed onto the stack, the SP is decremented, and 
the computer branches to 5000. Then 5003 is again pushed onto 
the stack, and the process continues. This program will have 
the effect of repeatedly pushing 5003 onto the stack, thus 
destroying all of memory and causing the computer to hang 
indefinitely. Actually, the process will continue until 
location 5000 is bombed, and then the computer will repeatedly 
execute the instructions represented by 50 (LD D,B) and 03 
(INC BC). 

Because the use of the stack is so flexible, you never need 
to worry about where to store data temporarily. Just push it 
onto the stack. Always make sure that you know where the 
stack is located so that you don't use it for other data. The 
best way to accomplish this is always to put a load stack 
pointer instruction at the beginning of any program you write. 
And don't forget that the computer also uses the stack during 
subroutine calls and interrupts, so that you have to keep 
PUSHes and POPs on the same levels. 



MEMORY MAP 

Before you can write an assembly-language program for the 
TRS-80, you must know the organization of the TRS-80's memory 
and how to use the various parts of it. Most TRS-80 owners 
are familiar with the division of the memory into ROM 
(read-only memory), dedicated input/output addresses, and RAM 
(random access memory), as shown in the diagram on the 
following page. 	In this chapter, we will examine each of 
these three memory areas in detail. 

The ROM contains the Level II Basic interpreter, as well as 
the software for accessing the principal input/output devices 
-- the keyboard, video display, and cassette recorder. The 
main reason for placing software in ROM is so that you cannot 
accidentally erase it. 

The dedicated input/output addresses contain locations 
where certain devices are interfaced to the TRS-80 through 
MEMORY MAPPING. 	Only the keyboard, video display, line 
printer, disk controller, and cassette recorder are connected 
in this way. (The cassette recorder also uses port 255.) 
Additional devices can be interfaced through I/O ports. 

The RAM is where your programs and data must be located, 
but many addresses at the bottom of RAM are reserved for 
special purposes. 	In a non-disk Level II Basic system, 744 
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ADDRESS ADDRESS 

0 OH 

12287 2FFFH 

12288 3000H 

16383 3FFFH 

16384 4000H 

20479 4FFFH 
20480 5000H 

32767 7FFFH 
32768 8000H 

BFFFH 
COOOH 

05535 FFFFH 

LEVEL II BASIC ROM 
(LEVEL I ENDS AT 4095 = OFFFH) 

DEDICATED I/O ADDRESSES 

RAM 

END OF 4 K RAM 

END OF 16K RAM 

END OF 32K RAM 

END OF 48K RAM 

49151 
49152 

DECIMAL HEXADECIMAL 

Figure 2: Memory map 

locations are reserved. When you connect a disk drive to the 
TRS-80, the software needed to operate the disk must be loaded 
off the system drive into low RAM. This area of RAM then 
functions as an extension of the ROM, and if you accidentally 
destroy it, you must reboot the system. The TRSDOS disk 
operating system reserves over 5K, and Disk Basic requires an 
additional 5K. 

5.1 The Level II Basic ROM 

The TRS-80 has an unusually large ROM for a microcomputer. 
Most micros have just some kind of monitor or operating system 
in ROM, containing only the software for accessing the primary 
input/output devices. The TRS-80 has all that, but it also 
has the Level II Basic interpreter, which is huge by 
comparison. Level II Basic is an extremely complicated 
assembly-language 	program, 	written 	by 	Microsoft. 
Understanding how it works is beyond the scope of this book 
and unnecessary. MosL of Lhe Level II interpreter is unusable 
to assembly-language programs, although in chapter .15 we 
discuss assembly-language subroutines for Basic programs. 

The primary information we need to know about the ROM 
concerns the input/output software. We may also be interested 
in knowing the general organization of Level II Basic, and how 
to find out more about it. The general organization of the 
Level II ROM is as follows (all addresses are in hexa-
decimal): 

40 



0000 
01D9 
03E3 
0458 

- 01D8 
- 03E2 
- 0457 
- 058C 
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System initialization and I/O subroutines 
Cassette subroutines 
Keyboard driver 
Video display driver 

058D - 0673 Line-printer driver 
0674 - 070A Initialization code 
070B - 1607 Floating-point math 
1608 - 164F Table of entry points for functions 
1650 1820 Level II Basic reserved words 
-1821 - 1899 Table of entry points for Level 	II commands 
189A - 18C8 Unknown 
18C9 - 18F6 Non-DOS error messages 
18F7 - 191C Non-DOS initialization 
191D - 1953 Messages 
1936 - 2FFF Remaining Level 	II 	interpreter 

The ROM contains an enormous number of subroutines, but few 
of them are useful for assembly-language programs. Those that 
are useful are summarized below. This list shows the entry 
point (in hexadecimal), the registers containing parameters 
for the subroutine, the registers used (destroyed), and the 
operation of the subroutine. (Subroutines are always entered 
by a CALL instruction.) 

5.2 Keyboard Subroutines 

002BH 	INKEY subroutine: scans the keyboard and returns 
zero in A if no key is depressed, else returns a 
character. Uses AF, DE. 

0049H 	INPUT subroutine: scans the keyboard and waits for a 
key to be depressed. Returns character in A. 
Uses AF, DE. 

0040H 	LINE INPUT subroutine: accepts an entire line of 
input terminated by ENTER or BREAK. Displays 
characters typed, recognizing control functions 
(backspace, etc.). When called, HL => address of 
buffer where text is to be put, B = maximum number 
of characters in line. On exit, B = number of 
characters typed, including terminator. C set if 
line ends with BREAK. Uses AF, DE. 

5.3 Video Display Subroutines 

0033H 	DISPLAY subroutine: prints ASCII character in A 
at current cursor position on video display. Cursor 
located at 4020H. Uses AF, DE, IY. 
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01C9H 	CLEAR SCREEN subroutine: Clears screen and homes 
cursor. Uses AF. 

28A7H 	TEXT PRINT subroutine: prints all text pointed to 
by HL up to a carriage return (ENTER key = ODH) or 
NULL (00) at current cursor position. Uses HL, AF. 

5.4 Cassette Subroutines 

0212H 	DEFINE DRIVE: selects cassette and turns motor on. 
A=0 for cassette #1, or 1 for cassette #2. Uses AF. 

01F8H 	CASSETTE OFF subroutine. Uses no parameters. 

02878 	Write leader and sync byte. Uses AF, C. 

02648 	Write byte in A to cassette. 

0296H 	Read leader and sync byte: locates beginning of 
program and positions for reading next bytes. Motor 
keeps running. Uses AF. 

0235H 	Read byte: next byte on cassette returned in A. 
User must keep up with cassette speed of 500 baud. 

Since all the standard TRS-80 tapes, such as Basic 
programs, machine-language object programs, and Basic data 
tapes, are written in special formats, you need additional 
information to use the cassette. This subject is covered in 
detail in chapter 14. 

5.5 Miscellaneous I/O Subroutines 

003BH 	LINE PRINT subroutine: prints byte in A on line 
printer. On exit, Z is set if printer is ready. 
Uses AF, DE. 

0013H 	Inputs a byte from an input device. On entry, DE => 
DCB of riavir'a. 	nn exit, Z ig set if ready, 	Uses  AF, 

00188 	Output a byte to a device. On entry, A=output byte, 
DE => DCB of device. On exit, Z is set if device is 
ready. Uses AF. 

0023H 	Output a control byte to an I/O device. On entry, 
A = control byte, DE => DCB of device. On exit, Z is 
set if device is ready, A = status. Uses AF. 
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00608 	Delay loop in 14.66-microsecond increments. 
BC = number of delay pulses. Uses AF, BC. 

0066H 	NMI reset location: jumps here on non-maskable 
interrupt. In effect, halt or reset. 

5.6 RST vectors 

You may recall from our discussion of the Z-80 instruction set 
above that the RST instructions have the same effect as a CALL 
to locations 0 to 56 in multiples of 8. It may appear that 
you cannot use these instructions, because the area that they 
call is in ROM. Actually, you can use most of them, because 
calls to these locations are vectored out into low RAM 
addresses. 	These addresses contain jumps to yet another 
series of addresses that are automatically inserted there by 
power on or reset. (A "vector" is simply a jump instruction.) 
Nevertheless, all of the restart instructions are used 
extensively by Level II Basic, so you must take this into 
account when setting up your own routines. RST 0-32 are used 
by Level II, and RST 40-56 by Disk Basic and DOS only. The 
operation of RST 48 and RST 56 is too complicated to describe 
in the summary here. 	The following table shows the vector 
addresses and gives a brief description of the Basic 
function: 

RST 	RST 	Jumps 

	

decimal hex 	to Vector Function  

	

0 	OH 	(none) 	(none) Reboot system: power on 
or reset. 

	

8 	8H 	40008 	1C96H 	Byte at HL compared with 
byte at top of stack. If 
non-zero, SN error. 

	

16 	10H 	4003H 	1D78H 	Increment HL and pass through 
string, ignoring spaces or 
carriage return. C is set if 
next character numeric, 
else C is reset. 

	

24 	18H 	4006H 	1C9OH 	HL compared to DE. Z is set 
if equal, C set if DE>HL. 

	

32 	20H 	4009H 	25D9H 	If double-precision number 
C is reset, else C is set. 

	

40 	28H 	400CH 	4BA2H 	BREAK key vector: jumps 
here if BREAK key is typed. 

48 30H 400FH 44B4H 
56 38H 4012H 4518H 
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5.7 Level II Basic Commands 

The Level zz gom map shown above does not go into the decoding 
of Basic statements. If you are interested in this subject, 
the following information will explain how to find out more 
about it. 

Each of the Level II Basic reserved words is represented 
internally by a unique byte,  called a "token", with a value 
from 808 to Feu. When you type  in a Basic program, only the 
tokens are stored -- not the complete words you type. 
Starting at location 16508 and extending to 18308 is a list of 
all the reserved words, in numerical order of the tokens. The 
first byte of each word is indicated by having bit 7 set, 
which is not used in ASCII node. There are two tables of jump 
addresses, located at I0088 - 164r8 and 1822a - 1899u, plus m 
third area starting around 24u0u, that give the addresses 
where each command is executed. If you figure all this out, 
you will construct the following table, which is shown by 
tokens, in alphabetical order rather than numerical: 

ABS 	n9 0977 	GOsUa 
AND 	o2 25Fo 	G0r0 
uSC 	e6 2a0r 	IF 
Arm 	E4 15eo 	zNuDY$ 
AUTO a7 2008 	Iwp 
oDoL Fl 0xou Iweur 
CB8$ F7 2alF 	ImSre 
CINT Bs 0a7r 	Imc 
CLEAR o8 1D7a 	KILL 
CcOan a9 2Clr 	L8rT$ 
CLOSE A6 4185 	c:m 
CLG 	84 01C9 	LET 
CMm 	85 41,73 	LINE 
COmT u3 loE& 	LIST 
C0s 	El 1541 	LLIS? 
Csovo aa 2or5 	cOao 
CSmG s0 0uel 	LoC 
CVo 	oO 415u 	D]F 
CVI 	E6 4152 	LOG 
CVS 	E7 4158 	ceeIe? 
DATA 88 le05 	cSoT 
nEp 	ao 415a 	nEm 
oEFooL 9a lu09 	mamGm 
ouaImr 99 lO03 	mzo$ 
oEFsmG 9a lC06 	muo$ 
uErucu 98 lE00 	pmz$ 
ooLsT8 a0 3Bn0 	mKS$ 
DIM 	8x 2600 	mxmo 
Eozr 90 2E60 	NEW 
uLGo 95 lF07 	m:Kt 

01 luol 
8o loC2 
8F 2039 
C9 019D 
DB 2AEF 
89 219a 
C5 4190 
DD 0e37 
ax 4I91 
F8 2a61 
F3 3&03 
8C 1F21 
9C 41u3 
a4 3e38 
a5 2829 
s7 4188 
Ea 4164 
8e 4167 
oc 0809 
AF 2067 
ae 4197 
C8 27C9 

O 4I0a 
ra 2a9a 
ox 4170 
EC 416a 
oo 416o 
a9 418E 
aa 1849 
87 22e6 

READ Da 21uF 
eom 93 la07 
RESET 82 0138 
RESTORE 90 1n9I 
BmSmnE 9p lFxz 
m8TOom 92 1uD3 
mIGac$ F9 2a91 
nmo 	on 14C9 
uGo7 AC 419& 
nOm 	88 18x3 
Saou uo 41a0 
SET 	83 0135 
SGm 	o7 098u 
SIN 	E2 1547 
SUn 	oo 13O7 
STEP co 2u01 
Sroe 94 1oa9 
sTn$ F4 2836 
SrezmG$ C& 2a2F 
SYSTEM no 03e2 
TAB( BC 2137 
?&m 	E3 15x8 
r8Om CA ----
zzMm$ C7 4176 
TO 	eo ---- 
TRoFr 97 1or8 
1aUm 96 1or7 
USING or 2Ceo 
oSR 	Cl 27sE 
uoL 	r5 2Ac5 
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END 80 1DAE NOT CB 25C4 VARPTR CO 24E8 
EOF E9 4161 ON Al 1F6C + CD 249F 
ERL C2 24DD OPEN A2 4179 - CE 2532 
ERR C3 24CF OR D3 25F7 * CF ---- 
ERROR 9E 1FF4 OUT AO 2AFB / DO 
EXP EO 1439 PEEK E5 2CAA ** D1 
FIELD A3 417C POINT C6 0132 > D4 
FIX F2 0B26 POKE 81 2C131 = D5 
FN BE 4155 POS DC 27F5 < D6 
FOR 81 1CA1 PRINT B2 206F FB ---- 
FRE DA 27D4 PUT A5 4182 22 2866 
GET A4 417F RANDOM 86 01D3  26 4194 

. 2E 0E6C 

** Indicates the up arrow key. 

If you want to know more about the ROM, the best thing to 
do is to get a disassembler program and look at a disassembled 
listing of the ROM. A disassembler is the reverse of an 
assembler, showing the machine instructions corresponding to 
the program stored in memory. 

One final word of caution about the ROM is in order: there 
are different versions of the ROM that are and have been sold 
by Radio Shack. All of the ROMs are functionally identical, 
but exactly what the differences are and why different ROMs 
are being sold are not known at the time of this writing. 

5.8 Dedicated I/O Addresses 

The area from 3000H to 3FFFH is used for direct-memory-access 
(DMA) input/output devices. It is organized as follows: 

3000 - 37DD 
37E0 

37E4 

37E8 
37EC - 37EF 
3800 - 3880 
3C00 - 3FFF 

Unused at present 
Disk drive select latch 
(37DE, 37DF, 37E1-37E7 also used for disk) 
Cassette drive select latch 
(cassette also uses port. FF) 
Line printer 
Disk controller 
Keyboard addressing 
Video display memory 

Since the keyboard and video display are so important for 
the functioning of the TRS-80, their operation will be 
explained in more detail. 
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5.9 Keyboard Addressing 

Locations 3800u - 3aFFB do not exist in the rnS-80'a memory. 
When a location there is addressed, the computer actually 
reads the keys of the keyboard. Each key depressed causes m 
certain bit in a specific location to read ^l^ rather than 
^0". The correspondence between the keys and the memory 
locations is as follows: 

MEMORY  
ADDRESS 

a/r 
u I c z 4 » s r 

381on 

C.-.— 2. af—h—A~~~~~~ 

For example, if you type  the "F^ key, bit 6 in location 
3801 will be set, causing the value at 3801 ty reed 40a. a 
keyboard-reading subroutine must simply check locations 3801 
to 3840 to see if there is any non-zero value, and then decode 
the bits into the proper letter, checking location 38808 to 
see if the shift or control keys aze.pceesed. This may seem 
like muou work, but it actually happens so fast that a 
keyboard-deb0000e routine has become necessary to prevent 
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accidental double reading of typed letters. 	The keyboard 
debounce does nothing except insert a delay into the 
key-reading process. 

5.10 Video Display Memory 

The video display memory occupies locations 3C00H - 3FFFH. 
This is a 1K buffer that is mapped directly to the 1024 
positions of the video display, starting in the upper-left 
corner and extending 64 characters across each line for 16 
lines. If you store a number in one of these locations, its 
ASCII equivalent is displayed on the screen. (ASCII tables 
are in the LEVEL II BASIC REFERENCE MANUAL, the EDITOR/ASSEM-
BLER REFERENCE MANUAL, and the TRSDOS & DISK BASIC REFERENCE 
MANUAL.) Unless your TRS-80 has been modified to display 
lower-case letters, bit 6 of the video display memory does not 
exist. 

If you store a value in video memory that has bit 7 set, it 
indicates a graphics character. Graphics divide each cursor 
position into six PIXELS. 	Bits 0-5 of the value stored 
determine which pixels are set. These bits are mapped into 
the graphics as follows: 

BITS 
	

7 
	

6 
	

5 
	

4 
	

3 
	

2 
	

1 

PIXEL 

GRAPHICS BLOCK 

4: Graphics 

5.11 The RAM 

As we mentioned above, a minimum of 744 bytes of low RAM are 
reserved for Level II Basic, and approximately 10K is used ,in 
Disk Basic. All of youc programs and data must go elsewhere. 
It is important to have an understanding of what is located in 
these reserved addresses. 	Some of them are used by every 
TRS-80 program, whereas others are used only by obscure Basic 
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commands. 	Even adding Disk Basic to the system does not 
complicate matters that much, for the DOS is loaded from 
4400H, and all you need to know is that it functions as an 
extension of the ROM, so you shouldn't destroy it. 	Different 
disk operating systems use the memory immediately below this 
area in different ways, some of which are incompatible with 
other DOSs. 

The data control blocks (DCBs) for the three primary I/O 
devices of the TRS-80 are located immediately following the 
jump vectors. These blocks are the keyboard, video display, 
and line printer. The concept behind a DCB is very intelli-
gent, and the fact that it is in RAM is also important, 
because it enables you to use different software from that in 
the ROM. The organization of all DCBs is very similar: 

Byte 1: 
	

DCB type 
Bytes 2-3: 
	

driver address 
Bytes 4-6: 	parameters used by the device 
Bytes 7-8: 
	

identifying letters 

The "driver" for each device is the software that actually 
stores or fetches data from it. 	By patching a different 
address pointing to a different driver into these bytes, you 
can use non-standard software, such as the keyboard-debounce 
routine. 	When 	additional 	devices are added to 	the TRS-80, 
they are often also 	interfaced through DCBs. 

The 	following table shows the complete organization of low 
RAM. 	All addresses are in 	hexadecimal. 	The 	functions 	of 
addresses which are not indicated are unknown. 

4000 	RST 8 	Jump vectors for RST instructions 
4003 	RST 16 
4006 	RST 24 
4009 	RST 32 
400C 	RST 40 
400F 	RST 48 
4012 	RST 56 
4015 - 401C Keyboard DCB 
4016 RUM driver address: 	03E3H 
401B Device name KI 	("keyboard input") 
401D - 4024 Video display DCB 
401E ROM driver address: 	0458H 
4020 Cursor location 
4022 Cursor character 
4023 Device name DO 	("display output") 
4025 - 402C Line printer DCB 
4026 ROM driver address 058DH 
4028 Lines/page 
4029 Line counter 
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402B 	Device name PR ("printer") 
402D 	Normal return to DOS 
4030 	Error return to DOS 
4036 - 403C 	Keyboard work area 
403D 	Print-size flag (0=64 char, 8=32 char mode) 
4040 	25-msec heartbeat interrupt 
4041 - 4046 	TIME$ storage area 
4041 	Time: seconds, minutes, hours 
4044 	Date: year, day, month 
4047 	Lowest location of usable memory 
4049 	Highest location of usable memory 
4050 	FDC interrupt vector 
4052 	Communications interrupt vector 
4054 - 405C 	Reserved 
408E 	Entry point to USR routines 
4093 	INP (input port) routine 
4096 	OUT (output port) routine 
4099 	1NKEY$ storage 
409A 	Error code storage for RESUME 
409B 	Printer-carriage position 
409C 	Device-type flag: -1=tape, 0=video, 1=printer 
409D 	PRINT# use 
40A0 	Start-of-string space pointer 
40A4 	Start-of-Basic program pointer 
40A6 	Line-cursor position, used for TAB 
40A7 	Input-buffer pointer 
40AA - 40AC 	Seed for RND 
40AF 	Number type flag (NTR): 2=integer, 

3=string, 4=single, 8=double 
4061 	Top of Basic memory pointer 
4083 	String work-area pointer 
40B5 	4005 	String work area 
4006 	Memory size pointer 
40DC 	Used by DIM 
400E 	Used by PRINT USING 
40DF 	System tape entry-point storage 
40E1 	Auto flag: 0=not auto, else auto 
40E2 	Line number 
40E4 	Auto increment 
40E6 	Encoded-statement pointer 
40E8 	Pointer-to-stack pointer 
40EA 	Used by RESUME 
40EC 	Edit line number 
40EE 	Used by RESUME 
40F5 	Last line number executed 
40F7 	Used by CUNT 
40F9 	Pointer to end of Basic program 

Also simple-variables pointer 
40FB 	Arrays pointer 
40FD - 4100 	Free space 
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4101 - 411a 	Variable type declaration table (a_x) 
2=iotegec, J=atciog, 4=siogle, 8=double 

&lla zaOm flag: 0=ra0rF 
4I10 - 4124 	 ritb table 
4127 - 4128 	uritbex table 
4130 	Line-number work area pointer 
4152 - 41A5 	DOS entry points 
4152 	CVI 
4155 	FN 
4158 	CnG 
4l5o 	DCF 
415E 	CVo 
4161 	O8F 
4164 	cUC 
4167 	L0r 
4l6u 	moI$ 
4lho 	MKS$ 
4170 	mKD$ 
4173 	Cmu 
4176 	7IME$ 
4179 	0rom 
4l7C 	rz8co 
4l7F 	GET 
4182 	PUT 
4185 	CLOSE 
4188 	LOAD 
4l0a 	muaGB 
418E 	muMu 
4191 	KILL 
4194 	s 
@I97 	LSur 
4l9A 	nSEz 
4l90 	ImSTn 
4la0 	SAVE 
4lA3 	LINE 
41E8 - 42E7 	Input-buffer area 
4288 	System stack pointer 
42E8 	Always zero 
4289 	Start of Basic grogram 

(Disk Basic programs start at 68oA) 

While Basic programs start at location 42o98, pressing the 
reset button nausea material to be written into locations 
4330a through 4348B, thus making 4349a the first free location 
for assembly language programs. When running a Disk system, 
7000O is the first free location used neither by Disk Basic 
nor by the TaSo0S utilities. 



USING THE 
EDITOR/ASSEMBLER 

PROGRAM 

When you think you are finally beginning to understand the 
machine instructions for the TRS-80 and are ready to try 
writing a program to do something, then you have to consider 
the problem of getting the instructions into the computer. 
This is where the Editor/Assembler program comes into play. 

The Editor/Assembler program was one of the first software 
packages sold by Radio Shack. 	Developed by Microsoft, the 
company that wrote Level II Basic, the original program came 
with a very helpful book called the TRS-80 EDITOR/ASSEMBLER 
USER INSTRUCTION MANUAL (catalog number 26-2002). This book 
is perhaps the most important book anyone planning to write 
assembly-language programs for the TRS-80 should read. It is 
not easy reading, however, and most beginners will get 
confused by its rather clumsy organization and lack of 
sufficient introductory explanatory material. 

One drawback of the original Editor/Assembler program, 
which we will henceforth refer to by its shorthand name 
EDTASM, was that it allowed programs to be saved only on the 
cassette-tape recorder. This worked fine, but it took a long 
time to read tapes into the computer. A revised version of 
EDTASM has been available with Apparat's NEWDOS PLUS which 
extends the input-output routines so that they work with 
either cassette or disk. This program has a number of other 
improvements over the original. Microsoft has also introduced 
a similar revision called Editor/Assembler plus, and many 
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other assemblers are now available. Whether you have the tape 
or disk version, however, the EDTASM program is identical in 
all other respects. 

When you write an assembly-language program, you have in 
mind a specific series of machine instructions that you want 
to have loaded into the computer at some particular memory 
address, and then executed. There are actually several steps 
involved in this process. Let us try to clarify these steps 
and introduce some terminology. 

The machine instructions to be executed must be written 
down in some kind of notation. They are indicated 
individually by names called "mnemonics" (pronounced 
"nem-on-iks"). 	The mnemonics used by the EDTASM program are 
the Zilog names introduced above in chapter 3. 	There are 
other sets of mnemonics that have been designed for the Z-80 
(mostly as extensions of 8080 mnemonics) that are rather 
different from the Zilog notation, but we will not mention 
them because we won't be using them. 

The starting location in memory at which we want to have 
the program assembled is called the "origin" of the program. 
This is indicated to the assembler by the ORG 
pseudo-operation. ORG is called a "pseudo-operation" because 
it is not a machine instruction. There are several other 
pseudo-operations, such as the END statement, which indicates 
the end of the program. The function of a pseudo-op is to 
indicate something to the assembler other than a machine 
instruction. 

The function of the assembler is to translate the mnemonics 
that indicate your program into the numerical values that 
represent the operations you have specified. Each instruction 
is denoted by a unique value for a byte or series of bytes. 
Z-80 instructions may be 1 to 4 bytes long. For example, 04 
indicates "INC B" 	(increment the B register), and 3E, the 
first byte of a 2-byte instruction, indicates "LD A,N" (load A 
with the value specified in the next byte). These values are 
referred to as "machine code", and a particular sequence of 
instructions that perform some task is a program. The 
important point here is that every instruction corresponds to 
a number, and the assembler's function is to translate your 
mnemonics into those numbers. 

The numbers that represent instructions are only one kind 
of numerical value handled by the assembler. 	Others include 
data values and addresses. Numerical data values are 
self-defining. "3" indicates the value 3. The only possible 
confusion is the number system employed. EDTASM's convention 
is that all numbers are decimal unless followed by the letters 
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H or 0, in which case they are either hexadecimal (base 16) or 
octal (base 8). 	"30" indicates the value 30, but "30H" 
indicates 30 hexadecimal, which is 48 decimal. Addresses and 
machine code are always printed in hexadecimal form by the 
assembler. 

Addresses, which are always two-byte values, indicate the 
memory locations at which either the machine instructions or 
data they employ are located. 	When the program is being 
assembled, an internal number called the "location counter" is 
set equal to the value you specify as the origin of the 
program. 	As each instruction is assembled, the location 
counter is incremented by the number of, bytes in 	the 
instruction. 	You can refer to the location counter by the 
symbol "$", to which you can add or subtract values. 	For 
example, the instruction "JP $+5" indicates a jump to the 
location 5 bytes ahead of the value of the location counter at 
the beginning of the JP instruction. When using the location 
counter, it is necessary to count the number of bytes 
corresponding to each instruction between the "$" and the 
location referred to. You must always jump to the first byte 
of an instruction. 	Otherwise, a disastrous error could 
occur. 

Addresses are usually referred to by "labels", which are 
symbolic names of one to six letters, written at the beginning 
of a program line. When you are writing a program, you do not 
normally think about such problems as how many bytes fit 
between the area where you are currently writing down your 
instructions and something you are referring to. When you use 
a label, the assembler computes the appropriate value 
corresponding to the label and substitutes it for every 
reference to it within the program. 

When your program is written out in mnemonic form, it is 
called a "source program". Once it has been assembled into 
machine code, it is called an "object program". 	The 
assembler's function is to translate your source program into 
an object program, and then to store the results either on 
cassette or disk, from which it can be read into memory. The 
assembler can also store your source program in symbolic form 
on cassette or disk, and read it back in later. What we need 
to understand here is that reading the program into memory is 
another step, called "loading", which must be done after the 
assembly is finished. This will be done either with the 
SYSTEM command in Basic if the program is stored on cassette, 
or with the LOAD or RUN commands in TRSDOS if stored on disk. 
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6.1 Editor/Assembler Commands 

Assembling the program is only half the job of the EDTASM 
program. 	The other half of its name is "Editor". This means 
that EDTASM also contains a text editor, which you use when 
typing your program into the computer. The Editor is simple 
and easy to use. All commands are single letters. To type in 
your program, you use the I (Insert) command, unless you are 
replacing an existing line, in which case you use R (Replace). 
I works very much like the AUTO command in Basic. Every line 
in the program has a line number, but you don't have to type 
the number. 	It is printed automatically. The default first 
line number is 100, and 10 is the default increment between 
each line, enabling you to insert up to 9 lines between each 
existing line. If you need to insert more, you must first 
renumber the lines with the N (Number) command, which takes no 
more than about a second. While typing the program, the right 
arrow can be used as a Tab key, which jumps in groups of eight 
spaces. 

A group of several successive lines can be indicated by 
separating the first and last numbers by a colon. 	This is 
necessary with several commands, such as D (Delete), P 
(Print), or H (Hardcopy). 	("Hardcopy" means "line print", 
while "print" goes to the video display.) The symbols "#" and 
"*" can be used in place of the first and last lines, and "." 
in place of the current line. For example, D100:120 deletes 
lines 100 through 120. P#:* prints the entire program on the 
video display. 

Once a line has been typed in, you can modify it with the E 
(Edit) command. 	Edit works exactly the same way as the EDIT 
command in Level II Basic. In addition to Edit, there is an F 
(Find) command that searches through the entire program for a 
particular string. If you want to change each occurrence of 
it, however, you must do so one-at-a-time. 

An entire source program can be saved on tape, or in the 
revised EDTASM, on disk. 	This is done by the W (Write) 
command, while reading in a previously-stored program is done 
by L (Load). 

Finally, there is the most important command, A (Assemble). 
A has several options, which can be specified in any 
combination, separated by slashes. The first string following 
A (and a space) is the name of the object program (this is 
used only if the program is written to cassette). 	Other 
options are NO (no object tape or file written), NS (no symbol 
table printed), LP (line print: assembly printed on line 
printer rather than video display), NL (no listing: assembles 
without printing), and WE (wait on error: pauses whenever an 
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error occurs). 	For example, to assemble your program you 
might specify: "A PROG/WE/NS" meaning "assemble the program 
now typed into memory, wait if any error occurs, and don't 
print a symbol table at the end." 

There is one other command: B (Basic), which returns you 
to Level II Basic, or to TRSDOS if you have a disk. 

During the assembly process, your source program is stored 
in memory, and the symbol table, which consists of all the 
labels you have used and the addresses where they occur, is 
stored backwards starting at the top end of memory. The most 
discouraging error you can get is "SYMBOL TABLE OVERFLOW", 
which means that you don't have enough memory to contain the 
program and assemble it. Before giving up, however, you can 
eliminate your comments and try again. 

When you are typing in a program, each line has four 
different fields, three of which are optional. The format is 
as follows: 

(LABEL) 	OPCODE 	(OPERAND(S)) 	(;COMMENTS) 

Optional fields are indicated as being enclosed in 
parentheses. Each field is separated by either a space, or 
preferably by the right-arrow key, which aligns the fields 
vertically. The comments must be preceded by a semi-colon, 
and an entire line may be comments if it begins with a 
semi-colon. The LABEL is a symbol whose value is set equal to 
the location counter when the line is assembled. The OPCODE 
is the mnemonic for the instruction. The OPERAND(S) indicate 
the registers or values used by the opcode, but not all 
opcodes have operands. COMMENTS are for your own benefit, so 
that you can remember what you are doing. 

6.2 Writing a Program 

Now that we have described the Editor, let us try to go over 
the process of writing a program. In the EDTASM manual there 
is an example program that consists of just three steps: 
first, it fills the entire video screen with a graphics block. 
Second, it waits a few seconds to leave the screen "whited 
out". Finally, it returns to Basic or TRSDOS. 	We will go 
over this program step-by-step, and explain what it does and 
how it does it. The program is as follows: 

00100 	ORG 	7000H 
00110 VIDEO EQU 3CO0H 
00120 	START 	LD 	HL,VIDEO 	;SOURCE ADDRESS 
00130 	LD 	DE,VIDE0+1 	;DEST. ADDRESS 
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00140 LD BC,400H ;BYTE COUNT 
00150 LD (HL),OBFH ;GRAPHICS BYTE 
00160 LDIR ;WRITE OUT SCREEN 
00170 ;DELAY LOOP TO KEEP WHITED-OUT SCREEN ON 
00180 LD B,5 
00190 LP1 LD HL,OFFFFH ;VALUE TO DECREMENT 
00200 LP2 DEC HL 
00210 LD A,H 
00220 OR L ;HL=O? 
00230 JP NZ,LP2 ;IF NO DEC AGAIN 
00240 DJNZ LP1 ;DEC.B--B=O? 
00250 JP OH ;RETURN TO BASIC 
00260 END START 
00270 <BREAK> 

This listing is taken directly from the EDTASM User's 
Manual. The only changes we have made are to name the first 
location in the program "START", to include this name on the 
END statement, and to change the origin of the program to 
7000H so that it will work with both cassette and disk 
systems. (The reason for this is explained below.) 	The 
comments are those that are in the manual. 

The video display is a memory-mapped output device that 
automatically displays whatever characters are placed in 
locations 3C00 to 3FFF hexadecimal (15360 to 16383). 	The 
character whose value is OBF hexadecimal (191) is a totally 
white graphics symbol. If you place this character in each of 
the locations 3C00 to 3FFF, you will "white-out" the screen. 
This could be done by the following Basic program: 

10 FOR 1=15360 TO 16383 
20 POKE 1,191 
30 NEXT I 

One way of performing these operations in machine language 
would be as follows: 

00100 	LD 	HL,15360 	;first loc. of screen 
00110 	LD 	BC,1024 	;chars. on screen 
00120 	LD 	D,191 	;graphics byte to D 
00130 	LOOP 	LD 	(HL),D 	;store D in memory 
00140 	INC 	HL 	;point to next loc. 
00150 	DEC 	BC 	;decrement count 
00160 	LD 	A,B 	;BC=O? 
00170 	OR 	C 
00180 	JR 	NZ,LOOP 	;if non-zero, continue 

The first tnree instructions load various registers with 
initial values, but each of the values means something quite 
different. 	HL is 15360, the first location of the video 
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memory. BC is 1024, a count of the number of bytes on the 
screen. 	D is 191, the graphics byte that we want to display. 
LD (HL),D means that the value in register D is stored in the 
location whose address is in the HL register pair. (We used 
register D rather than A for this purpose, because A is being 
used later in the program, and its value would be destroyed.) 
Following this instruction, we increment HL, so that we point 
to the next location in video memory, and we also decrement 
BC, so that our count is decreased. Whenever a register pair 
contains an address of some memory location, we say that it 
"points to" that location. There are many instructions that 
load or store a byte in the accumulator using a register pair 
as a pointer. When this occurs, the register pair is enclosed 
in parentheses. 

Now comes a slightly more complicated portion of the 
program. 	We want to know if BC is zero yet, for if it is we 
are finished. However, there is no Z-80 instruction that 
tests to see if a double register is zero. We must therefore 
use a group of instructions. "LD A,B" loads the accumulator 
with the contents of the B register. 	Then we perform a 
logical OR operation on A with the contents of C. 	(Why 
couldn't we use B? Because you can do arithmetic and logical 
operations only in A, or HL for 2-byte operations.) OR looks 
at the value of each bit in each register, and if either of 
them is 1, the result is then a 1. Thus, A will be zero only 
if both B and C are zero. This type of "programming quickie" 
takes a long time to figure out the first time you do it, but 
can be used thereafter without your having to think it through 
again. The final instruction, "JR NZ,LOOP",- jumps to LOOP 
only if A is non-zero, repeating the process until the entire 
video display is blanked out. 

If you now look at the original program, you will see that 
the above method was not used. Instead, the program used four 
"LD" instructions and an "LDIR". The first statement, "VIDEO 
EQU 3CO0H", means that the value of 3C0OH (15360) will be 
substituted for any occurrence of the symbol VIDEO; 3C01H 
(15361) is substituted for "VIDE0+1". EQU is another 
pseudo-operation. 

The instructions following the EQU are all in preparation 
for the LDIR at the end. 	LDIR is one of the fanciest 
instructions on any microcomputer. It is a block transfer 
which uses HL as the source pointer, DE as the destination 
pointer, and BC as the count. When executed, it does all of 
the following: 	load the location pointed to by DE with the 
value of the location pointed to by HL (in other words, copy 
the value of (HL) to (DE)), and decrement BC. If BC is 
non-zero, both HL and DE are incremented and the process is 
repeated until BC is zero. LDIR is normally thought of as 
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moving one block of data to another block, but here the two 
blocks are separated by only one byte. That is why it is 
necessary to have the "LD (HL),OBFH" before LDIR. 	What it 
does is to load 3C00 with the value OBFH, so that when LDIR 
begins (HL) contains that value. Once stored in the next 
location and HL and DE are incremented, HL will continue to 
point to a location containing OBFH. 

The next portion of the example contains the delay loop. A 
delay loop is usually implemented by simply loading a value 
into a register and decrementing it until it is zero. If you 
figure out how long it takes each instruction in the loop to 
excute (a few microseconds) and multiply this by the count, 
you can compute the delay time. In the actual program, there 
are two delay loops, one inside the other. One of the loops 
uses the HL register pair and the other the single register B. 
The loops include lines 180 through 240 in the first listing 
above. 

The inner loop (lines 200-230) uses the same method we 
described above for testing whether the value in HL is zero: 
A is loaded from H, and L is ORed to A. If the result is 
non-zero, the decrementing continues. The original value in 
HL is FFFF (65535), the maximum value that can be contained in 
a register. It is necessary to indicate this as "OFFFFH", 
because the assembler requires any hexadecimal number 
beginning with a letter (A-F) to be preceded by a zero to 
distinguish it from a symbol. This loop delays as long as 
possible. (For those of you who want to know exactly how long 
this is, it is computed as follows: "DEC HL" requires 6 T 
states (basic clock periods), "LD A,H" requires 4, "OR L" 4, 
and "JP NZ,LP2" 10. 	This is a total of 24 T states. The 
basic clock frequency of the TRS-80 is 1.77 MHz (563 
nanoseconds), so the total time for one occurrence of this 
loop is 13512 nanoseconds. 	65535 occurrences takes about 
.88556 seconds.) 

The outer loop uses the B register, and the decrementing is 
done with the DJNZ instruction, which both decrements B and 
jumps to the location named LP1 if it is non-zero. 	While we 
are discussing this loop, we should notice that the previous 
JP (jump) instruction could be replaced by a JR (jump 
relative). 	This would save one byte of memory used by the 
program, although the instruction takes slightly longer to 
execute (12 T states instead of 10). In general, it is better 
to use jump relatives (when possible) rather than jumps, 
because memory is more likely to be the limiting factor than 
speed. 

The final instruction in the program, "JP 0", jumps to 
location zero, which re-boots TRSDOS or Level II Basic. 	This 
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step may not seem important, but it actually is. You must 
always consider what is supposed to happen when your program 
is finished, and if you don't know what to do, then you should 
probably re-boot the system as this program does. 

The last line of the program, END, has the symbol START in 
the operand field. This is the first instruction in the 
program that is to be executed, which is in line 120. You 
should always indicate a starting symbol on the END statement, 
since this will be required when the file is stored on disk or 
tape. In TRSDOS, you can simply say "RUN PROG" and the 
program will execute, and when using the SYSTEM command in 
Lev'el II Basic you can just type "/<ENTER>" and it will run; 
otherwise, you have to give the starting address in decimal. 

Once the program has been typed into the computer, it is 
time to assemble it. We could use a command like "A PROG/WE" 
for this purpose. "PROG" is the name of the program that will 
be written on cassette. 	(If you have the disk version of 
EDTASM, you would be asked whether you wanted the program 
written on cassette or disk here.) 	"WE" is the "wait on 
error" option, which is always a good thing to use. 	The 
assembler's output will appear as follows: 

00100 
00110 

21003C 00120 
11013C 00130 
010004 00140 
368F 00150 
EDBO 00160 

00170 
0605 00180 
21FFFF 00190 
2B 00200 
7C 00210 
B5 00220 
021270 00230 
10F5 00240 
030000 00250 

00260 
TOTAL ERRORS 

*A PROG/WE 
7000 
3C00 
7000 
7003 
7006 
7009 
7008 

700D 
700F 
7012 
7013 
7014 
7015 
7018 
701A 
7000 
00000  

ORG 	70005 
VIDEO EQU 	3C00H 
START LD 	HL,VIDEO 	;SOURCE ADR. 

LD 	DE,VIDEO4-1 ;DEST. ADDRESS 
LD 	BC,400H 	;BYTE COUNT 
LD 	(HL),OBFH 	;GRAPHICS BYTE 
LDIR 	;WRITE OUT SCREEN 

;DELAY LOOP TO KEEP WHITED-OUT SCREEN ON 
LD 	B,5 

LP1 	LD 	HL,OFFFFH 	;VALUE TO DEC 
LP2 	DEC 	HL 

LD 	A,H 
OR 	L 	;HL=O? 
JP 	NZ,LP2 	;NO? DEC AGAIN 
DJNZ 	LP1 	;DEC.B--B=O? 
JP 	OH 	;JUMP TO BASIC 
END 	START 

LP2 	7012 	<This is the symbol table> 
LP1 	700F 
VIDEO 	3C00 
START 	7000 
READY CASSETTE 	<Load cassette tape, set to RECORD> 
<ENTER> 
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The hexadecimal numbers in the first column on the left 
show either the value of the location counter when that 
instruction is being assembled, or the value of the symbol 
defined or referred to there. The next column, which varies 
from one to three bytes (two to six characters) in our 
example, shows the actual machine code. From this point on 
(in each line), the listing is identical to our source 
program. 	At the end, the assembler tells us how many errors 
we made, and then prints the symbol table in reverse order of 
the definition of the symbols. 	Finally, the program is 
recorded on cassette tape. (If we were using disk, this would 
happen automatically without our having to do anything here.) 
The "*" at the end is the assembler's prompt fo'r an additional 
command. 

This program is a good introduction to the use of the 
Editor/Assembler, but it really doesn't do anything useful for 
us. In the chapters below we will concentrate on more 
meaningful applications of assembly-language programming. 



READING AND 
PRINTING NUMBERS 

Now that we have some understanding of how a program is 
written in assembly language, and we know how to use the 
TRS-80 ROM subroutines to read the keyboard and print a 
character on the video display, we come to the practical 
subject of writing a program to do something useful. At this 
point we encounter a number of new complexities that must be 
reckoned with. Many of the things that we can take for 
granted when programming in Basic cannot be done so easily in 
machine language. 

Foremost among these is number conversions. When we type 
in a number at the keyboard -- say an easy number like 1000 --
we are typing a string of decimal digits. The computer 
receives these one at a time, and has no particular reason for 
associating them and considering them as one number, unless we 
tell it how to. Furthermore, the digits that we type are 
received by the machine in ASCII format. If we want to use 
the number they represent in computations, we must convert 
these digits into one hexadecimal value. Once we have done 
our computations, we will probably want to display any answers 
that we produce in decimal rather than hexadecimal form; but 
to print any number requires that we convert the digits to 
ASCII form and print them one at a time. 

Coping with these problems is, in a nutshell, the subject 
of this chapter. Fortunately, we are not the only people who 
have ever had to struggle with them, and there are a number of 
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standard solutions that can be used. Our goal is to be able 
to have you get a number into the computer, where you can 
operate on it, and back out, where you can see the result. 

Let us clarify first that there are many kinds of numbers 
employed in a computer. Level II Basic computes with three: 
single- and double-precision floating-point numbers, and 
integers. 	We will restrict our consideration in this chapter 
to integers, specifically those used by Level II, in which the 
total amount can be contained in a two-byte word or register 
pair (such as BC, DE, or HL). 	These numbers have no 
fractional values and have a maximum range of -32768 to 
+32767, or an absolute value of 0 to 65535. 

When we consider a number in a two-byte word, it is stored 
in hexadecimal form. All such numbers are actually stored 
"backwards" in memory but "correctly" inside any register pair 
that contains them. This means that a value like 10238 is 
actually stored as 2310 inside memory. This is just a quirk 
of the Z-80 that is preserved for compatibility with the 8080 
and 8008, and it really makes no difference except if we go 
hunting through memory one byte at a time to find a number. 

In this chapter, we will consider only three problems: 
inputting a hexadecimal number, and printing a number in 
hexadecimal or decimal form. These are difficult enough for 
beginners. In later chapters we will consider some of the 
problems involved in computing with other kinds of numbers. 

7.1 Printing a Number in Hexadecimal Form 

Suppose that we want to display the hexadecimal value of a 
single byte on the video screen. A byte requires exactly two 
hexadecimal digits. 	We must convert these digits to ASCII 
form and print them one at a time. To see what we have to do 
here, it is convenient to refer to a chart showing the 
relationship between hexadecimal values and ASCII graphics. 
Appendix B gives a complete chart of the ASCII values, but we 
will reproduce the relevant portions of it here. 	In reading 
this chart, the numbers at the top show the most-significant 
hexadecimal digit and the numbers going down the left side the 
least-significant digit. 
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2 	3 	4 	5 
0 	space 	0 @ P 
1 	! 	1 A Q 
2 	2 B R 
3 	# 	3 C S 
4 	$ 	4 D T 
5 	% 	5 E U 
6 		6 F V 
7 	, 	7 G W 
8 	( 	8 H X 
9 	) 	9 I Y 
A 	* 	: 
B 	+ 	; 
C 	, 	< 
D 	- 	= 
E 	

' 	
> 

F 	'/ 	? 

J 
K 
L 
M 
N 
0 

Z 
up arrow 

down arrow 
left arrow 
right arrow 

cursor 

The 16 possible hexadecimal digits are referred to 

As we approach this problem, let us consider the machine 
operations we will need. 	To display the first hexadecimal 
digit, we have to move the leftmost 4 bits in the byte (0-3) 
over to the rightmost 4 bits (4-7). This can be done by 
either shifting or rotating the byte four times. 	There are 
many different Z-80 instructions that might be used for this 
purpose, but the best ones to use are RRCA or RRA, because 
they are faster than some of the others and require only one 
byte. RRCA rotates the accumulator right one bit, with the 
bit shifted off the end into both the carry and bit O. The 
fact that it is a rotate instruction is irrelevant for our 
purpose, but it doesn't matter, because we are going to ignore 
bits 0-3 when we are done. 

Once the proper value is moved into bits 4-7, we have to 
get rid of whatever remains in bits 0-3. An AND instruction 
is needed here. AND takes two bytes, one in A and the other 
either in another register or in a memory location, and 
compares them bit-by-bit. Only if a 1 exists in each of the 
two bytes is it kept in the result. 	AND OFH preserves the 
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by the 
characters '0' through '9' and 'A' through 'F'. 	We can see 
that these are in two separate portions of the chart. and, 
fortunately, they are in a logical ascending order. 	For 
numerical digits, the value of the digit (0-9) plus 30H 
produces the ASCII representation. For the letters A-F, we 
have to add not 30H, but 37H. The simplest way of producing 
an ASCII digit is first to add 30H to the hexadecimal digit, 
then test to see whether the result is higher than 39H, and if 
so, add 7. Once this is done, we have to perform the same 
operation on the other 4-bit hexadecimal digit in the byte. 
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rightmost four bits, because OFH (15) is the hexadecimal 
equivalent of 00001111 binary, which has ones in the four 
right bits. 

A complete ASCII display of the hexadecimal value of a byte 
is accomplished in the subroutine shown below. It is assumed 
that you have appropriately positioned the cursor on the video 
display, and that the byte you want to display is in A. DISP 
calls the ROM subroutine to display a byte (see Chapter 5). 

;subroutine to print hex value of byte on video display 
HEX 	PUSH 	AF 	;save byte 

RRCA 	;shift 
RRCA 	;bits 0-3 
RRCA 	;into: 
RRCA 	;bits 4-7 
CALL 	HEX2 	fist digit 
POP 	AF 	;bits 4-7 

HEX2 	AND 	OFH 	;zap 0-3 
ADD 	A,30H 	;0 to 9 
CP 	3AH 	;if <3A 
JR 	C,DISP ;display 
ADD 	A,7 	;A to F 

DISP 	CALL 	33H 	;display 
RET 	;done 

The subroutine ends by falling through to DISP, which 
returns to the Calling program. 

This routine is adequate for displaying a single byte, but 
what about larger values? 	For hexadecimal numbers, the 
solution is easy, because all you have to do is load each 
byte, one at a time, and call HEX. A subroutine to print the 
2-byte value contained in the HL register pair is shown 
below: 

;display HL in hex on video display 
PHLHEX LD 	A,H 	;first H 

CALL 	HEX 
LD 	A,L 	;then L 
JP 	HEX 

The jump at the end could be eliminated by physically 
locating this subroutine immediately before HEX, as we placed 
HEX before DISP above. 	Factors like this should always be 
taken into account when considering where to locate 
subroutines in memory. 
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7.2 Printing a Number in Decimal Form 

Printing the value of a number in decimal form is a totally 
different kind of problem, because there is no convenient 
relationship between decimal digits and the bit positions they 
occupy. Since a byte can have a value only from 0 to 15, 
there is no real necessity to have a routine that displays a 
single byte in decimal form; but a routine to display a 2-byte 
word in decimal form is quite necessary. As we mentioned 
above, a 2-byte word can have a value either from -32768 to 
+32767 or from 0 to 65535, depending on whether we consider 
the first bit to be a sign. In the following discussion we 
will implement the latter method. 

In order to display a 2-byte value, we need first to 
display the ten-thousands digit, then the thousands, hundreds, 
tens, and ones digits. This amounts to five basic steps. 
Rather than duplicate the code for each step five times, we 
will seek a method that involves one loop that is executed 
five times with different data. The basic method is to start 
with our number (for example, 28672) and subtract 10000 from 
it. If the result is positive (18672), we increment a counter 
and subtract 10000 again (yielding 8672). When the result is 
finally negative (-1328), we display the value of the counter 
(2, the ten-thousands digit) and add back 10000 (8672 again). 
Then we start the process over again with 1000, and continue 
until we have gone through all five digits. 	The following 
subroutine implements this process using register IX as a 
pointer to the decimal digits, which are contained in a table 
called DECTBL: 

;subroutine to print a 2-byte 
;number in decimal form (0-65535) 
PDEC 	LD 	IX,DECTBL ;IX = pointer 
PDEC1 	XOR 	A 	;zero A 

LD 	B,(IX+1) 	;BC = decimal 
LD 	C,(IX) 	;digit 
OR 	A 	;zap carry 

PDEC2 	SBC 	HL,BC 	;subtract BC 
JR 	C,PDEC3 	;digit done 
INC 	A 	;else increment A 
JR 	PDEC2 	;continue 

PDEC3 	ADD 	BL,BC 	;add back 
ADD 	A,30H 	;'0' to '9' 
CALL DISP 	;display 
LD 	A,C 	;if Cl,= 
CP 	1 	;done 
RET 	Z 
INC 	IX 	;else increment.  
INC 	IX 	;IX twice 
JR 	PDEC1 	;digit 
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DECTBL DEFW 10000 
DEFW 1000 
DEFW 100 
DEFW 10 
DEFW 1 

;table 

This subroutine assumes that the value to be printed is in 
HL wnen it is called. Note that IX points to the decimal 
digits, while BC actually contains their values. A is used 
for the counter that is incremented each time the subtraction 
yields a positive result. 	Since we are dealing only with 
decimal digits, converting to ASCII requires just adding 30H. 
IX' must be incremented twice, because each of the values in 
the decimal table DECTBL are stored in 2 bytes. This routine 
prints leading zeros, and it destroys the previous values of 
A, HL, DE, and IX. 

7.3 Inputting a Number in Hexadecimal Form 

To input hexadecimal digits that represent a single number, we 
have a problem similar to what we faced before, but in 
reverse. The keyboard reads one digit at a time. This digit 
represents a 4-bit quantity inside the number we are creating. 
We can either automatically wait to receive four digits, or 
more preferably wait for a special character such as ENTER to 
signify that the number is finished. 

The following subroutine reads the keyboard and builds a 
hexadecimal number in the HL register pair, waiting for ENTER 
to terminate the number. If we do not type four digits, zeros 
will occupy the unfilled positions; and if we type more than 
four, only the last four will be kept. 	Each digit is 
displayed as it is typed. 

;subroutine to read a hexadecimal 
;number from the keyboard into HL 
INPUT 	LD 	HL,0 	;clear HL 
INPUT1 CALL KEYIN 	;get digit 

CP 	13 	;ENTER? 
RET 	Z 	;if cn t  done 
CALL DISP 	;else disp 
CP 	'0' 	;if < '0', 
JR C,INPUT1 ;ignore 
CP 	3AH 	;if > '9', 
JR 	C,STRIP 	;'0' to '9' 
CP 	'A' 	;if < 'A', 
JR C,INPUT1 ;ignore 
CP 	'G' 	;if >= 'G', 
JR 	NC,INPUTl ;ignore 
SUB 	7 	;A-F: 3A-3F 
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STRIP 	AND 	15 	;zap bts 0-3 
ADD 	HL,HL 	;shift HL 
ADD 	HL,HL 	;left 4 bits 
ADD 	HL,HL 	;very, very 
ADD HL,HL ;slowly 
LD 	D,0 	;zero D 
LD 	E,A 	;move A to E 
ADD 	HL,DE 	;add digit.  
JR 	INPUT1 	;next digit 

KEYIN 	CALL 49H 	;ROM keyboard routine 
RET 	;(see chapter 5) 

While this subroutine reads and displays +any character 
typed at the keyboard (except ENTER), the character will be 
used only if it is a legitimate hexadecimal digit -- '0' to 
'9' or 'A' to 'F'. This is insured by the series of compares 
following INPUT1. If the character is an 'A' to 'F', 7 is 
subtracted from the ASCII value, thus creating 3A to 3F. Then 
the left four bits are masked out (at STRIP). At this point, 
the present contents of HL are shifted left four bits, by 
being added to themselves four times in succession. 	This is 
an efficient way to do it, and the ADD HL,HL instruction takes 
only one byte. Then the number we have inputed, presently 
residing in A, is moved to DE; but since it is only one byte, 
it is put into E, and D is cleared. Finally, DE is added to 
HL, and the subroutine goes to get the next digit. Note that 
the previous contents of DE are lost in this process. 

7.4 A Sample Program 

The following program reads a hexadecimal number from the 
keyboard and prints it in decimal form. It is an endless 
loop, always looking for a new number after printing the old 
one, so you will have to hit. RESET to stop it. You can type 
gibberish, but the program will accept only legitimate digits. 
The number is also displayed in hexadecimal form. You must 
hit ENTER after typing the number. 

ORG 	7000H 
START 	LD 	A,1CH 	;home cursor 

CALL DISP 
LD 	A,IFH 	;clear video 
CALL DISP 
LD 	A,OEH 	;on cursor 
CALL DISP 

NEXT 	CALL INPUT 	;get number 
CALL SPACE 	;print space 
CALL PHLHEX 	;hex display 
CALL SPACE 
CALL PDEC 	;decimal 
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LD 	A, 13 	;print CR 
CALL oISe 
Ju NEXT 

	

GexCO Lo 	a,' ' 
Ja DI8p 

;cnpy e8La8X Ueca 
;copy auu here 
;copy Po8C here 
;oopy INPUT here 



ORGANIZING ARRAYS 
AND TABLES 

8.1 Arrays 

One of the most important principles of writing good programs 
is to organize data items so that they can easily be accessed 
for whatever purposes they are to be used. This chapter will 
be devoted to methods of organizing tables and arrays so that 
they can be searched or processed easily by the Z-80. 

An ARRAY is the same thing that a SUBSCRIPTED VARIABLE in 
Basic is. It is a group of items organized under a single 
heading, because the items usually have something in common 
that makes it useful to consider them as a group. Arrays may 
have several DIMENSIONS. A one-dimensional array is simply a 
LIST. A two-dimensional array is usually thought of as being 
organized into columns and rows, like a matrix, and a 
three-dimensional array is a group of matrices. 

When using the TRS-80, there are usually just two kinds of 
data that are organized into arrays: ASCII data and numerical 
data. 	ASCII data is the same as STRING data in Basic 
programs. There are many different kinds of numerical data: 
bytes, integers, BCD numbers, and floating-point numbers are 
some of the possibilities. Other types of data that might be 
used in some applications include graphics code -- actually 
numerical data, but of a very specialized kind -- and actual 
machine code. 
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8.3 ASCII Tables 

Data needs to be organized to enable efficient searching 
through it. The subject of searching is also discussed in 
connection with the block search instructions in chapter 9. 
Here, we will go beyond the subject of searching through 
single bytes to searching through groups of bytea, 

Suppose that we have a list of names, and that we want to 
aaaccia tucougu them to find a particular one. Here we might 
encounter difficulties in distiuguisuIug the beginning and 
middle of a name. For example, consider the following data: 

JOSEPH 
ans 
Jo 

I 	we enter these items into a table as they appear above, we 
see that the letters "Jo" appear in each one. One solution is 
to allocate a certain number of bytes to each item, and pad 
the rest with blanks. (This is the method used by the Disk 
nyacatioq System for file names and passwords.) 	In the 
following table, all items have a length of eight bytes; 

D8Fm 'JOSEPH ' 
oEFn 	'JOE 	' 

DBrm 	'Jo 

Now if we sencob for the succession 'JO 	', we will find 
it only once. 	out this method is wasteful of memory space, 
and does not allow for names longer than eight characters. 
Another solution is to put some special value, such as zero, 
or 13, the carriage-return character, at the end of each item 
to signify the end: 

o8r1v1 	'PHILADELPHIA' 
ouFB 	0 
oOFo 	'CHICAGO' 
DCFS 	0 
oaFm 'LOS amGoLmG^ 
oarB 0 

This method allows strings of any length to represent an 
item, but still "wastes" a byte at the end. A similar 
solution is to gut a byte indicating the length of the string 
at the beginning, following it with the data/ but this method 
also uses an extra byte,  and now we would have to count all 
the letters! 

An even better method takes advantage of the fact that 
ASCII code is only seven bits and does not use the sign bit 
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(7). Therefore, as long as we remember to eliminate bit 7 
when we get the item out of the table, we can set this bit as 
an indication of the beginning of an item: 

DEFB 	'J'+80H 
DEFM 	'OSEPH' 
DEFB 	'H'+80H 
DEFM 	'ARRY' 
DEFB 	'T'+80H 
DEFM 	'HOMAS' 

This table consists of the names 'JOSEPH', 'HARRY', and 
'THOMAS', but the first character has the sign bit set. (This 
method is used by Level II Basic when it searches for Basic 
key words.) 

You will probably have more frequent occasion to set up 
tables that consist of more than one list, relating the items 
in corresponding positions. For example, the following list 
sets up two data tables, one consisting of the names of items 
for sale in a supermarket, and the other prices. Items are 
separated by the carriage return (13), and the end of the 
table is indicated by a 255 control 	byte: 

List 1 List 2 
ITEMS DEFM 	'EGGS' PRICES 	DEFM '.69' 

DEFB 	13 DEFB 13 
DEFM 	'BREAD' DEFM '.79' 
DEFB 	13 DEFB 13 
DEFM 	'MILK' DEFM '.55' 
DEFB 	13 DEFB 13 
DEFM 	'BUTTER' DEFM '1.95' 
DEFB 	13 DEFB 13 
DEFB 	255 DEFB 255 

Note that even though the items in the second list 
represent prices -- numerical values -- ASCII data is used. 
This makes it easy to print the values, but more complicated 
to perform the arithmetic of adding up the bill. If we were 
going to use this program for that purpose, we would probably 
replace this data with integer or floating-point numbers. 

Now let us consider the problem of writing a program to 
search through a series of items such as these and to pull out 
the price of an item selected. The following short program 
inputs a name and places it into a buffer called QUERY. Since 
the line input subroutine is used, the item name ends with a 
carriage return. This is partly the reason we used the CR in 
the tables above, which are to be copied into the program at 
the end. 
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;Item - Price 
ORG 

START LD 
PMSG 	LD 

CALL 
INC 
CP 
JR 

ITEM 	LD 
LD 
CALL 
JR 
LD 
LD 

ITmLP 	LD 
ITMLP2 LD 

CP 
JR 
CP 
JR 
INC 
INC 
JR 

NOTHIS INC 
LD 
CP 
JR 
CP 
JR 
JR 

NEXT 	INC 
NEXTD 	INC 

LD 
CP 
JR 
INC 
JR 

FOUND 	LD 
CALL 

FOUND2 LD 
CP 
JR 
CALL 
INC 
JR 

MSG 	DEFB 
DEFM 

QUERY 	DEFS 
ITEMS 	DEFM 

PRICES DEFM  

Search 
7000H 
HL, MSG 
A, (HL) 
33H 
HL 

NZ,PMSG 
HL, QUERY 
B,20 
40H 
C, START 
HL, ITEMS 
BC, PRICES 
DE, QUERY 
A, (DE) 
(HL) 
NZ,NOTHIS 
13 
Z,FOUND 
DE 
HL 
ITMLP2 
HL 
A, (HL) 
13 
Z,NEXT 
255 
NZ,NOTHIS 
START 
HL 
BC 
A,(BC) 
13 
NZ ,NEXTD 
BC 
ITMLP 
A,'$' 
33H 
A,(BC) 
13 
Z,START 
33H 
BC 
FOUND2 
13 
'ITEM?' 
20 
'EGGS'  

;print 'ITEM?' 

;ROM display routine 
;point to next byte 
;did we just print '?' 
;if not keep going 
;where to put data 
;max length of input 
;get line 
;if BREAK, try again 
;HL=>items 
;BC=>prices 
;DE=>test string 
;lst char of test string 
;compare to 'items' list 
;try next 
;stop at CR in test string 
;eureka! 
;try next char 
;of item & query 
;repeat 
;on to next item 
;test char 
;CR? 
;yes 
;last item 
;keep trying 
;didn't find - try again 
;char after CR 
;now inc price list 
;price char 
;CR? 
;no 
;char. after CR 
;try now 
;print '$' 
;before price 
;print price 
;last char? 
;yes 
;display 
;next char 

;print CR before... 

;input buffer 
;place ITEMS table here 

'.69' 	;place PRICES table here 
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••• 
END 	START 

If the subroutine does not find the item after comparing 
the names, it increments both the item pointer (HL) and the 
price pointer (DE) and keeps going. 	The program is an 
infinite loop, so that it returns and asks you for a new item 
whether or not it finds the previous item. 

The following code could be used instead of that at NOTHIS 
above: 

NOTHIS LD 	A,(HL) 
INC 	HL 
CP 	13 
JR 	Z,NEXT 
CP 	255 
JR 	Z,START 
JR 	NOTHIS 

NEXT ;(NOT INC HL) 

The difference here is that the "LD A,(HL)" precedes the 
"INC HL", so that the comparison is always made with the 
previous value. 	The first time that this occurs, we already 
know that A will not be 13 or 255, so the loop is executed one 
time unnecessarily. However, this eliminates the need for the 
extra "INC HL" after the loop at NEXT. The same change could 
be made to eliminate the extra "INC BC" at the end of the next 
section of code. In writing TRS-80 programs, it is generally 
preferable to optimize code in favor of using fewer bytes 
rather than fewer instruction executions, but this is a choice 
that you must make as a programmer. Here, even if we had 
thousands of items in the list, the difference in execution 
time would not be noticeable. 

One complicated aspect of the short program above was that 
it had to keep track of two separate tables. This can be 
eliminated if the data is organized in a different manner, 
such as the following: 

DEFM 	I EGGS$.69 1  
DEFB 	13 
DEFM 	'BREAD$.79' 
DEFB 	13 
DEFM 	1 MILK$.551  
DEFB 	13 
DEFM 	'BUTTER$1.95' 
DEFB 	255 

If one table is organized in this manner, the "$" can be 
used as a separator between one subfield and the other, and it 
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can also be printed as part of the text. This method would be 
valid unless the item names contained imbedded dollar signs 
highly unlikely! uuIikely! 

8.3 Command cables 

A problem related to the handling of tables above occurs when 
we need to test a aeries of command letters in order to 
perform some action. 	If our commands are represented by 
single letters, there is no problem, for we can just have a 
series of: 

ce 's^ 
JP Z, START 

But if we have commands of two or more letters, such as 'Gr' 
for Sr0r and SW for GwzrCu, this type  of programming gets very 
cumbersome. If 8L points to the command word, we could: 

Ce 'G' 

Ja mx,00TG 	;lst char oot,S 
INC 	8L 	/try next obac 
co a,(oL) 
Ce 	'?' 

J9 z,azog /'ST' 
CP 	'w' 
JP 	z,SWITC8 	;'SW' 

DEC 	8L 	;restore lot obac 
Lo 	A.(aL) 

mOTG 	... 	 ;continue 

It is much more efficient to set up a table of command 
words and addresses, such as the following: 

COmroL oEFm 	'sz' ;command table 
oorw sr0p 
ooFn 	'Gw' 

oErw SWITCH 
^`^ 
ooru 25s 

Note tna difference between D8rm and ooFw. n:rn defines a 
string of ASCII characters, whereas oErw defines a woao 
000ta1o1og the address of the memory location defined 
elsewhere in the program. 'STOP' and 'SWITCH' are the names 
of locations that contain the code executing these functions. 

This table can be searched, so that the program braooboa to 
the correct control word location if a match uoouca, as 
follows: 
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LD 	HL,(COM) 	;(COM) contains 2-char com 
LD 	DE,COMTBL 	;DE=>command table 

LOOK 	LD 	A,(DE) 	;1st letter to A 
INC 	DE 	;point to next letter 
CP 	H 	;compare 1st letters 
JR 	NZ,TRYNEX 	;no good 
LD 	A,(DE) 	;try second letter 
CP 	L 
JR 	Z,GOTCHA 	;both match 

TRYNEX INC 	DE 	;2nd letter of command 
INC 	DE 	;2-byte address 
INC 	DE 
LD 	A,(DE) 	;last entry in table? 
INC 	A 
JR 	NZ,LOOK 	;no 
JR 	DONE 	;yes 

GOTCHA INC 	DE 	;transfer address 
LD 	A,(DE) 	;to HL 
LD 	L,A 	;lsb 
INC 	DE 
LD 	A,(DE) 
LD 	H,A 	;msb 
JP 	(HL) 	;execute command 

DONE 	... 	 ;didn't find anything 

Note the unusual method that this program uses to test for 
the last value in the table. It takes advantage of the use of 
the value 255 as the end byte. This value is loaded into A 
and A is incremented. If A is now zero, then the previous 
value must have been 255 and we are done. This method saves 
one byte over the more usual succession: 

LD 	A,(DE) 
CP 	255 

but the latter method, of course, allows any value to be used 
as the end byte. 



MOVING DATA 

In this chapter we will cover one of the most important 
subjects in TRS-80 assembly language programming: moving data 
in memory. 	This is one of the tasks for which the Z-80 
microprocessor is ideally suited. 	Before we get into it, 
however, there is one thought that you should always keep in 
mind when writing a program: avoid moving data! 	Write your 
programs in such a way that the data is already located where 
you will need it. 	Moving data around can consume much 
execution time, especially if the moves are repeated very 
often. Lists and tables can be structured so that you don't 
have to go through each item to find something you are looking 
for. If you do have to move data, though, at least the 
programming is simple. 

9.1 Moving Blocks 

The register pairs BC, DE, and HL, as well as the two index 
regsters IX and IY, are very important from the standpoint of 
moving data within the TRS-80, because the address of any 
memory location can be contained in exactly a two-byte 
quantity. A BLOCK is any group of contiguous bytes in memory. 
Suppose that we want to move one block to another. The first 
block would be called the SOURCE BLOCK and the second the 
DESTINATION BLOCK. As long as we know the starting address in 
each block, it is easier to think of the length or byte count 
of the blocks rather than the ending addresses, because both 
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blocks are of the same length, even though the ending 
addresses are different. To move an entire block of data one 
byte at a time, we could load the first byte from the source 
block into the accumulator and store it in the destination 
block, then decrement the byte counter to see if it is zero. 
If not, we increment the pointers to both blocks and continue. 
The only problem here is that we cannot test for a zero value 
in a double register in just one instruction. Suppose that HL 
points to the source block, DE to the destination block, and 
BC ("byte count") to the length. The method described above 
is implemented in the following program, which moves the 
bottom 1K of ROM to the video display (try it!): 

ORG 	7000H 
START 	LD 	HL,0 	;source block 

LD 	DE,3C00H 	;destination = video memory 
LD 	BC,400H 	;length = 1K 

LOOP 	LD 	A,(HL) 	;get byte 
LD 	(DE),A 	;store in destination block 
DEC 	BC 	;decrement length 
LD 	A,B 	;BC = 0? 
OR 	C 
JR 	Z,DONE 	;if zero, done 
INC 	HL 	;point to next locations 
INC 	DE 
JR 	LOOP 	;continue 

DONE 	CALL 	49H 	;wait for keyin 
JP 	0 	;re-boot system 
END 	START 

Only the portion of the program up to DONE is necessary to 
move the block. At DONE, the program waits for you to type a 
key, then re-boots the system. We will continue to use this 
format throughout this chapter. 

This routine requires 12 instructions occupying 20 bytes. 
While it works fine, it turns out that everything from LOOP to 
the end can be accomplished by just one Z-80 instruction, 
LDIR, specifically intended for moving blocks of data. 	LDIR 
also happens to use the same registers we have used in this 
example for the same purposes 	HL points to the source 
block, DE to the destination block, and BC to the byte count. 
All we have to do is follow the first three instructions above 
by LDIR: 

ORG 	7000H 
START 	LD 	HL,0 	;source block 

LD 	DE,3C00H 	;destination block 
LD 	BC,400H 	;length 
LDIR 	 ;move block 

DONE 	CALL 	49H 	;wait for keyin 
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JP 	0 
	;re-boot 

END 	START 

LDIR moves (HL) to (DE) without even affecting the 
accumulator. 	This method requires only 11 bytes, and is even 
faster than the previous loop method. 

LDIR is one of the most important Z-80 instructions. It 
did not exist on the 8080. It is part of a group called the 
Block Transfer and Search instructions, and there are several 
similar instructions that should be mentioned in the same 
context. 

LDI also moves blocks of data like LDIR, except that only 
one byte is moved at a time and the instruction stops. The HL 
and DE registers are incremented and BC decremented, and the 
end of the loop is signified by the parity/overflow flag being 
reset. The reason for using LDI is to stop and do something 
else after each byte is moved. To continue to move the block, 
the instruction needs to be included in some kind of loop. 

As an example of the use of LDI, suppose that we want to 
move the first 1K of ROM to the video display as above, but 
that we want to stop at the first occurrence of the byte 'A'. 
If this byte is not found, the loop continues until the entire 
1K is moved. 	The following program uses LDI to accomplish 
this task: 

ORG 	7000H 
START 	LD 	HL,0 	;source block 

LD 	DE,3COOH 	;destination block 
LD 	LD,400H 	;length 

LOOP 	LDI 	 ;move one byte 
EX 	AF,AF' 	;save flags 
LD 	A,(HL) 	;get next byte 
CP 	'A' 	;is it 'A'? 
JR 	Z,DONE 	;if zero, yes 
EX 	AF,AF' 	;restore flags 
JP 	PE,LOOP 	;continue on parity even 

DONE 	CALL 	49H 	;wait for keyin 
JP 	0 	;re-boot 
END 	START 

The exchange AF with AF' instructions are needed to save the 
parity/overflow flag while the comparison is made. 	The 
compare instruction may reset parity/overflow before the loop 
is finished. Rather than having the flags saved in memory, 
they are saved in the alternate register set. 

LDD and LDDR are the same as LDI and LDIR, except that the 
DE and HL registers are decremented rather than incremented 
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during the operation. Instead of setting HL and DE to the 
first location in each block, you start them out at the last 
location. CC holds the byte count, as before, and it is 
decremented as with LDI and LDIR. These operations are used 
when you want to go through the blocks backwards, such as when 
searching for something as in our example of LDI above, or 
when you want the values of the HL or DE registers to point to 
the locations immediately preceding the blocks when finished. 
The following example moves the first 1K of ROM to the video 
display and looks for the first occurrence of a 'Y' to 
terminate the move; but the move is carried out backwards, 
starting at the bottom of each block. 

ORG 	7000H 
START 	LD 	HL,3FFH 	;source block (last address) 

LD 	DE,3FFFH 	;destination block 
LD 	HL,400H 	;byte count 

LOOP 	LDD 	 ;move one byte 
PUSH 	AF 	;save flags in stack 
LD 	A,(HL) 	;get next byte 
CP 	lyt 	 ;is it a 'Y'? 
JR 	Z,DONE 	;if zero, yes 
POP 	AF 	;retrieve flags 
JP 	PE,LOOP 	;continue if parity even 

DONE 	CALL 	49H 	;wait for keyin 
JP 	0 	;re-boot 
END 	START 

In this example, the flags are saved in the stack rather than 
in the alternate register set. 

It is important to realize that although LDIR and LDDR are 
only single instructions, their execution time depends on the 
length of the block being moved. 	They do not operate 
instantaneously; they move one byte at a time. Each move 
requires five machine cycles, taking 21 T states or 11.823 
microseconds on the TRS-80. Nevertheless, they are among the 
most efficient operations of the Z-80. 

9.2 Filling Blocks 

Filling a block simply involves storing the same value in each 
location. 	For this purpose, it is easy to employ the first 
method illustrated above, where a single register holds the 
value and one of the register pairs, particularly HL, points 
to the locations in the block. We also need another register 
pair such as BC to hold a byte count. We cannot use the 
accumulator to hold the value to be stored, because it must be 
used repeatedly to test whether BC has been decremented to 
zero. 	The following example fills the video display with a 
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completely white graphics block: 

ORG 	7000H 
START 	LD 	HL,3C00H 	;pointer to video memory 

LD 	BC,400H 	;byte count 
LD 	D,OBFH 	;graphics block 

LOOP 	LD 	(HL),D 	;store byte 
DEC 	BC 	;decrement count 
LD 	A,B 	;is BC = 0? 
OR 	C 
JR 	Z,DONE 	;if zero, yes 
INC 	HL 	;point to next location 
JR 	LOOP 

DONE 	CALL 	49H 	;wait for keyin 
END 	START 

It is important to use HL as a memory pointer whenever 
possible, because any register can be stored or loaded using 
HL, whereas only the accumulator can be used with DE or BC. 
(Any register can also be used with the index registers IX and 
IY, but these instructions should not be used when moving data 
around in this manner, because they take longer and are 
intended for different applications.) 

While the above method of filling a block is easy enough, 
it is also possible to use LDIR or LDDR for the same purpose, 
and that method is even easier. The trick is to store the 
first byte in the block, and then to set the source address to 
the value of this byte and the destination to the byte 
immediately following. The byte count is set to one less than 
the total length of the block. 	LDIR then moves the byte 
indicated by HL (the first byte, already stored) to the 
address indicated by DE (the next location), and the process 
continues until the whole block is filled. The following 
example also fills the video screen with a graphics block, as 
the example above, but uses LDIR to accomplish the task: 

ORG 	7000H 
VIDEO 	EQU 	3COOH 	;first video location 
START 	LD 	HL,VIDEO 	;first location 

LD 	DE,VIDE0+1 	;next location 
LD 	BC,3FFH 	;length 
LD 	(HL),OBFH 	;store first byte 
LDIR 	 ;fill screen 
CALL 	49H 	;wait 
JP 	0 	;re-boot 
END 	START 



MOVING DATA 	PAGE 81 

This program is identical to the program illustrating the 
use of the Editor/Assembler program in the User's Manual 
(Radio Shack catalog number 26-2002). 

9.3 Searching Through Blocks 

Searching through memory to find a specific value involves the 
same kind of process as moving a block of data, and the 2-80 
also has a special group of search operations analogous to the 
LDIR group. The most important of these is CPIR. 	There are 
also CPI, CPD, and CPDR. CPIR requires that you set HL to the 
first location of a block and BC to the length. The value to 
be searched for is loaded into the accumulator. Upon 
execution of CPIR, each byte in the block is compared with the 
accumulator. 	If a match occurs, the instruction is 
terminated. If not, the search continues until either a match 
is found or the entire block is searched. If BC is set to 
zero before the instruction begins, the computer will search 
through the entire 64K bytes of memory until it finds the 
value. When the match is found, HL contains the address of 
the byte following the match, and BC the number of bytes 
remaining to be searched. In this manner, the search can be 
continued as soon as the processing of the match is completed. 
The sign and zero flags are set as a result of the compare, 
and the parity/overflow flag is reset when BC is finally 
decremented to zero. 

The following example searches through the entire memory of 
the TRS-80 for the value 253 (FD hexadecimal, the first byte 
of an IY instruction). When one is found, the address of the 
location where it is found is displayed (in hexadecimal) and 
the search continues. 

VALUE 	EQU 	OFDH 	;byte to search for 
ORG 	7000H 

START 	LD 	HL,0 	;first location to search 
LD 	BC,0 	;length = 64K 
LD 	A,VALUE ;byte to look for 

LOOP 	CPIR 	;search 
JP 	PO,DONE ;if PO we're done, else we have match 
EX 	AF,AF' ;save A & flags 
DEC 	HL 	;because HL = next loc 
LD 	A,H 	;display HL in hex 
CALL 	HEX 
LD 	A,L 
CALL 	HEX 
LD 	A,' 	;print space between addresses 
CALL 	33H 	;ROM display routine 
INC 	HL 	;restore HL 
EX 	AF,AF' ;get back A & flags 
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Jm 	u]Ve 	;con tin tie 
oUNn 	CALL 	49a 	/wait for keyiu 

JP 	0 	;re-boot 
/beu display routine - see chapter 7 
HEX 	PUSH 	AF 

uuCA 
RuC& 
auC& 
auC& 
CALL 	BEX2 
r0e 	AF 

8ox2 	AND 	15 
ADD 	A,30a 
Ja 	C,oI8e 
uon 	 ,7 

oI8e 	CALL 	338 
aoz 
END 	START 

To have the program search for another value, simply change 
the argument field in the VALUE EOu statement. If you want to 
see something amusing, change it to 255 and see what happens! 
(If you want to movw why this happens, just remember that 255 
is the value that you get in locations where no memory 
actually exists.) 

The other search operations CPI, oro, and Cpoo are 
analogous to LoI, Lon/ and Looa. CPI and Ceo search only one 
byte at a time and stop, and CPo and Cpoa search backwards 
through memory. While we will not demonstrate their use berm, 
you can probably imagine situations where they might be 
preferable to cPIe. 	In any event, it is easy to see the 
usefulness of these operations. 



ARITHMETIC OPERATIONS 
WITH INTEGERS 

One of the most important limitations of all 8-bit 
microprocessors is their ability to perform only a few 
arithmetic operations. The Z-80 instruction set includes only 
the operations of addition and subtraction of 8- and 16-bit 
numbers. 	(The Z-80 is an improvement over the 8080, which 
does not include a 16-bit subtract operation!) 	This means 
that almost all computation -- not only multiplication and 
division, but also addition and subtraction of larger 
quantities -- must be carried out in rather complicated 
subroutines which perform repeated additions and 
subtractions. 

The question of the form in which the numbers are 
represented in memory is thus of crucial importance. For the 
TRS-80, there are really only two sets of number formats to 
consider: those provided in the Z-80 instruction set, and 
those in Level II Basic. Other formats can be implemented for 
various reasons, such as to achieve greater precision. 

83 
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10.1 8-Bit Addition 

The basic 8-bit arithmetic operations require the use of 
the accumulator to hold one of the operands and the result of 
the operation. The operations are as follows: 

ADD 	A,r 	Adds the contents of register r to A. 
ADD 	A,(HL) 	Adds the contents of the location 

whose address is in HL to A. 
ADD 	A,n 	Adds the value n to A. 
ADD 	A,(IR+d) Adds the contents of the location 

(IX+d) or (IY+d) to A. 

The condition codes are set to reflect the results of the 
operations. If zero is produced, the Z flag is set. The sign 
flag is copied from the sign bit of the accumulator. 

What happens if the result produced is too large to be 
contained in the accumulator? Let us clarify this situation 
through an example. 	If we add the two largest possible 
numbers together, 255 + 255 = 510, we find that 510 is too 
large to be contained in a single byte. Any result that can 
be obtained through the addition of two bytes requires at most 
one extra BIT, and what the Z-80 does is to put this bit into 
the carry flag. The P/V flag is also set to indicate an 
overflow (which would be detected through the use of the PO 
condition, because this is the same as odd parity). 	This 
operation can be illustrated as follows: 

register 	binary 	hexadecimal 	decimal 
A 	1111 1111 	FF 	255 
B 	1111 1111 	FF 	255 

Carry 1 	A 	1111 1110 	FE 	254 

Since the carry bit occupies the position of the ninth bit, 
its value is 256, which, when added to 254, gives the correct 
result of 510. 

This extra bit of precision can now be used in subsequent 
operations, to propagate the correct result into other bytes, 
which, when grouped with the original byte, are large enough 
to hold the correct result. To carry out this propagation, 
there is another set of operations that add or subtract the 
carry bit along with the two bytes. These operations are as 
follows: 



hexadecimal 
60 
9F 

A0 

binary 
0110 0000 
1001 1111 

+ 	1 
1010 0000 

given number 
one's complement 
add 1 
two's complement 
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ADC A,r Adds A + r + carry 
ADC A,(HL) Adds A + (HL) 	+ carry 
ADC A,n Adds A + n + carry 
ADC A,(IR+d) Adds A + (IX+d) 	+ carry 

or A + (IY+d) 	+ carry 

Some of the applications of these operations are illustrated 
below in the multiple-precision operations. 

10.2 Negative Numbers; Two's-Complement Notation 

Thus far, we have been discussing the values contained in 
bytes as if they all represented positive or absolute values. 
In fact, they often represent negative values, and the Z-80 
has a special way of indicating negative numbers. As we 
discuss this subject, it is important to keep in mind that 
several bytes are often grouped together to contain large 
values, and in this case only one sign applies to the entire 
group of bytes. 

First, negative numbers are represented by considering bit 
7, the leftmost bit, to be a SIGN. 0 indicates a positive 
number and 1 a negative number. Only 7 bits are then left to 
hold the value of the number. Second, negative numbers are 
represented in a form called TWO'S-COMPLEMENT NOTATION. 

If the sign of a byte is positive, the 7 bits of data 
simply indicate the value of the number, which can thus range 
from (+) 0 to 127. For example, if the bits in a byte read 
0011 0010, the value is 32 hexadecimal which equals 50 
decimal. 	You might think that if you changed the sign bit to 
1 the number would represent -50, but in fact this is not the 
way that two's-complement notation works. To understand two's 
complement, you must first understand the ONE'S COMPLEMENT. 
The one's complement of a binary number is formed by changing 
all the zeros to ones and ones to zeros. This is easy. 	In 
our example, the one's complement of 0011 0010 is 1100 1101. 
To form the two's complement, you add 1 to the one's 
complement. 	The two's complement of 0011 0010 is thus 1100 
1111 	Let us illustrate this process in a couple of 
examples: 

(a) Find the two's complement of +96 (60 hexadecimal): 
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(b) Find the two's complement of +127 (7F hexadecimal): 

hexadecimal 
7F 
80 

81 

binary  
0111 1111 
1000 0000 

+ 1 
1000 0001 

given number 
one's complement 

two's complement 

The curious thing about two's-complement notation is that 
the value of MINUS ZERO does not exist. Instead, -128 does. 
The complete range of signed values for bytes is thus -128 to 
+127. 

Since negative numbers are so important, the Z-80 has a 
separate instruction, NEG, that produces the negative 
equivalent of a byte. There is also a CPL instruction that 
produces the one's complement. (CPL exists on the 8080, but 
NEG does not.) 

Why do computers use two's-complement notation? The reason 
is that it simplifies the operation of arithmetic 
computations. 	Any combination of additions and subtractions 
will work. When two's-complement notation is used, the sum of 
a number and its negative value is always 256, which comes out 
to be zero when the extra bit shifts into the carry. 	Thus, 
whether bytes represent values of -128 to +127 or 0 to 255 is 
entirely a way of interpreting the number. Sometimes you can 
decide to use the sign and other times not to. 

10.3 8-Bit Subtraction 

Now that we understand negative numbers, let us consider the 
8-bit subtraction operations. They parallel exactly the 8-bit 
addition operations: 

SUB 	r 	Subtracts the contents of r from A. 
SUB 	(HL) 	Subtracts the value in (HL) from A. 
SUB 	n 	Subtracts n from A. 
SUB 	(IR+d) 	Subtracts the value in (IX+d) or 

(IY+d) from A. 
SBC 	A,r 	Subtracts r and the carry bit from A. 
SBC 	A, (HL) 	A - (HL) - carry 
SBC 	A,n 	A - n - carry 
SBC 	A,(IR+D) A - (IX+d) - carry or 

A - (IY+d) - carry 

Why is A indicated as an operand with SBC and not with SUB? 
The rule is that A must be indicated as the first operand 
whenever there is another possible Z-80 instruction that uses 
another first operand. In this example, "SBC HL,DE" 	is a 
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possible operation, but "SUB HL,DE" is not. There is a 16-bit 
SBC operation, but no 16-bit SUB operation. Another point to 
note is that, when dealing with subtract operations, it is 
more relevant to think of the carry bit as a "borrow" rather 
than as a carry, but the letter C is what is indicated in the 
mnemonic. 

If we consider some examples of subtraction operations, we 
can see the way that the two's-complement notation works: 

(a) Subtract 20 from 8 (8 - 20 = -12) 

The easiest way to explain the functioning of this 
operation is to do it the same way that you would if you were 
doing the arithmetic by hand: note that -20 is of greater 
magnitude than 8, and therefore subtract 8 from 20 and negate 
the answer: 

hexadecimal 	binary 	decimal 
14 	0001 0100 	20 
08 	0000 1000 	8 

OC 	0000 1100 	12 
F3 	1111 0011 	one's complement 

+ 1 
F4 	1111 0010 	-12 

(b) Add 8 and -20 (8 + (-20) = 12) 

08 	0000 1000 
	

8 
EA 	1110 1010 	-20 

F4 	1111 0010 	-12 

This example was included to verify that the addition of a 
negative number would also produce the correct result. 

(c) Add 234 and 8 

08 
	

0000 1000 8 
EA 
	

1110 1010 
	

234 

F4 	1111 0010 	242 

This example shows that the Z-80 is indifferent as to 
whether the bytes added are considered positive unsigned 
numbers or signed numbers. The results are correct in either 
case. To verify that the binary answer is correct, we 
evaluate each of the bits as follows: 2 + 16 + 32 + 64 + 128 
= 242. 
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When a subtract with carry operation occurs, it subtracts 
not only the number, but also the carry bit. Thus, while an 
ADC operation may make the result 1 greater because of the 
carry bit, an SBC operation may make it 1 less. 

10.4 Multiple-Precision Addition and Subtraction 

The 8-bit addition and subtraction operations can be combined 
to perform calculations on any size quantities. As an example 
of this sort of operation, we will first use the 8-bit 
operations to perform 16-bit calculations. These can then be 
compared to and verified by the 16-bit operations. 	The 
following routine adds two two-byte values whose addresses are 
contained in the IX and IY registers. For compatibility with 
16-bit operations, it is assumed that the bytes are stored 
"backwards" in memory (least-significant byte first): 

LD 	A,(IX) 	;get lsb of 1st value 
ADD 	A,(IY) 	;add lsb of 2nd value 
LD 	(IX),A 	;save in (IX) 
LD 	A,(IX+1) 	;get msb of 1st value 
ADC 	A,(IY+1) 	;now add the carry too 
LD 	(IX+1),A 	;store in (IX+1) 

The main point illustrated by this example is that the 
carry bit must be added the second time but not the first. 
Also, while this example takes six instructions, it is not 
particularly difficult, and four of the six instructions are 
used to retrieve and store the data. 

The following subroutine performs a 16-bit subtraction 
operation, subtracting the value in the DE register pair from 
that in HL and storing the result in HL. It is equivalent to 
the Z-80 operation "SBC HL,DE", but has a very practical 
application to the 8080 microprocessor, since the 8080 does 
not include this instruction: 

DSBC 	PUSH 	AF 	;save previous value of AF 
LD 	A,L 	;get lsb of 1st operand 
SUB 	E 	;subtract lsb 
LD 	L,A 	;save in®L 
LD 	A,H 	;get msb 
SBC 	D 	;subtract msb 
LD 	H,A 	;save in H 
POP 	AF 	;restore AF 
RET 	;return 

We can verify that the result produced by this subroutine 
is identical to that produced by the SBC HL,DE instruction by 
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comparing the results later. 	(There is one difference, 
however: the condition codes are not the same.) 

It is now easy to see how these operations can be extended 
to greater precision through the use of additional bytes to 
hold the numbers. The following subroutine performs a 4-byte 
integer addition to two sequences of bytes whose addresses are 
held in the HL and DE register pairs, the former also being 
used to hold the result. 	4-byte integers like these are 
capable of containing values up to 2 to the 31st power -1, 
which equals 2,147,483,647. In this case the bytes are all 
stored backwards in memory, so that when the subroutine is 
entered the registers point to the least-significant bytes: 

ADD4 	LD 	A,(DE) ;get lsb of first number 
ADD 	A,(HL) ;add lsb of second number 
LD 	(HL),A ;save 
LD 	6,3 	;3 remaining bytes 

ADD4LP INC 	HL 	;point to next bytes 
INC 	DE 
LD 	A,(DE) 	;get next byte 
ADC 	A,(HL) 	;add the carry this time 
LD 	(HL),A ;save 
DJNZ ADD4LP ;continue 
RET 	;done 

Since the addition of all bytes after the first can be done 
in a loop, the code for this routine is not significantly more 
complicated than a 16-bit add loop. 	In fact, as the next 
example shows, all operations can be done in a single loop 
through the use of an additional instruction: OR A, which has 
the sole effect of clearing the carry bit, without changing 
the value in the accumulator. If the carry is cleared before 
the first instruction is executed, but not after the 
subsequent ones, the add or subtract with carry operations can 
be used exclusively. The following subroutine does a 4-byte 
subtraction corresponding exactly to the 4-byte addition 
above, using only the SBC operation, so that the whole 
subroutine is one loop. The HL and DE registers are used to 
hold the addresses of the operands, DE holding that of the 
minuend and HL the subtrahend: 

SUB4 	LD 	B,4 	;4-byte subtract 
OR 	A 	;clear carry 

SUB4LP LD 	A,(DE) ;get minuend 
SBC 	A,(HL) ;subtract subtrahend 
LD 	(DE),A ;save difference 
INC 	DE 	;point to next bytes 
INC 	HL 
DJNZ SUB4LP ;continue 
RET 	;done 
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10.5 Compare Operations 

Compare operations are equivalent to subtracts, only with one 
important difference: 	the values in the registers are 
unchanged. 	only the condition codes are affented. The x-80 
has only 8-bit compare operations, all of obiob require using 
the accumulator. The most obvious application of omngaces is 
to test whether the value in the accumulator is equal to some 
other number, but it is also possible to teat whether it is 
greater or less than another value. Compare instructions are 
almost always followed immediately by conditional JP or Ju 
inutuctioos. Thus, it is most useful to remember the meanings 
of the various conditions: 

condition 	means tbat... 
Z 	the value compared was BOoaL to that in the 

accumulator. 
Wx 	the two values are UNEQUAL. 
C 	the absolute value in A is LESS 'Paam the 

compared value. 
NC 	the absolute value of a is GREATER THAN 

OR mDDac TO the compared value. 
M 	The signed value of x is LESS THAN the 

compared value. 
P 	The signed value of a is GuDxzox THAN 

OR o0Uac TO the compared value. 
PO 	An overflow was produced by the compare 

operation. 
eC 	No overflow was produced by the compare 

operation. 

The x and 0% conditions present no problem, while the 
difference between C and m on the one hand, and NC and p on 
the other, require additional explanation. Use of the p and m 
conditions, wb1ob could be renamed NS ("no sign" = e) and S 
("sign" = M) by analogy with the others, depends on whether 
you are using numbers in the positive and negative sense and 
evaluating bytes on a -138 to +I27 Umaie. -2 is less than +l, 
but the absolute value is greater because -2  is F8 hexadecimal 
in two's-complement form, whereas +l is 01. The sign bit is a 
copy of bit 7 of the accumulator. 

The C and mo conditions do not depend on the sign, but 
rather on the absolute value of the bytes, on a scale from 0 
to 255. 	If the value of -1  in the accumulator is compared 
with +l, the 0C condition will be set, because the absolute 
value of -1 is Fe ~ 255. The advantage of using C and NC is 
that the jump relative 1ootcuntiooa recognize these conditions 
(as well as Z and N3),  but not P and M (nor PO and pD). 
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10.6 16-Bit Instructions 

As we mentioned above, the Z-80 also has 16-bit addition and 
subtraction operations. Most of these use the HL register 
pair in the same way that the 8-bit operations use the 
accumulator. The index registers can also be used for 
addition only. The operations are as follows: 

ADD 	HL,ss 	ss must be BC, DE, HL, or SP 
ADC 	HL,ss 
SBC 	HL,ss 
ADD 	IR,pp 	pp must be BC, DE, SP, IX, 

or IY (IX can be added only 
to IX and IT to IY) 

One of the first important differences between the 8-bit 
and 16-bit operations is that the 16-bit operations require 
that the operands reside in the registers themselves. No add 
or subtract with memory or immediate data exists. 
Fortunately, the Z-80 also has instructions that load double 
registers directly to or from memory (the 8080 only allowed 
this with HL). 

There are two important applications of the 16-bit 
operations: the computation of memory addresses and integer 
arithmetic in Level II Basic. 	Any memory address can be 
contained in a 16-bit register. 	You can thus compute the 
addresses where data are stored if you need to. Level II 
Basic integers may have values from -32768 to +32767. 	The 
main difference between these two applications is the same as 
between signed and absolute bytes: 	memory addresses are 
usually considered on an absolute scale from 0 to 65535, while 
Level II Basic integers use the sign bit. If you are familiar 
with the PEEK and POKE statements, perhaps you already know 
that if you want to PEEK or POKE from locations 32760 to 
32770, you have to go from 32760 to 32767, and then from 
-32768 to -32766. The rule for this anomaly is that if the 
PEEK or POKE address is above 32767, you must subtract it from 
65536. Locations 32768 to 65535 are thus referred to by 
-32768 to -1. 

The 16-bit instructions can be used to perform the same 
multiple-precision adds and subtracts mentioned above, in 
fewer instructions. The problem here is that the register 
pairs cannot be used to contain addresses, since they have to 
be used to hold the data itself. 	This requires either 
reorganizing the use of the registers in the subroutines, or 
using additional instructions to fetch and store the bytes. 
The following subroutine performs a 32-bit add as shown above, 
using the 16-bit instructions. In this example, IX and IY 
contain the addresses of the first byte of the operands. 
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IX is also used as a pointer to the result. 

ADD4 	LD 	B,2 	;loop twice 
OR 	A 	;clear carry 

ADD4LP LD 	L,(IX) 	;1st byte of 1st operand 
LD 	H,(IX+1) 	;2nd byte of 1st operand 
LD 	E,(IY) 	;lst byte of 2nd operand 
LD 	D,(IY+1) 	;2nd byte of 2nd operand 
ADC 	HL,DE 	;perform addition 
LD 	(IX),L 	;save lsb 
LD 	(IX+1),H 	;save msb 
INC 	IX 	;inc each reg twice 
INC 	IX 	;since 2 bytes 
INC 	IY 	;added each time 
INC 	IY 
DJNZ 	ADD4LP 	;continue 
RET 	 ;done 

It can easily be seen that the additional work required to 
fetch and store the data makes this method unwieldy and 
cumbersome. Note also that the previous contents of HL, DE, 
and B are lost in the above subroutine. Saving and restoring 
them would require a minimum of six additional instructions. 

The main advantage of the 16-bit arithmetic instructions is 
that they can be built right into the code of a program 
section, so that they do not require calling an external 
subroutine, which is necessary for most other types of 
arithmetic performed by the Z-80. 

One final note. All 16-bit numbers, whether they represent 
addresses in machine instructions or Level II Basic integers, 
are stored "backwards" in memory, with the least-significant 
byte first. 	This is done automatically by the LD 
instructions, so that you never have to worry about it, except 
if you go PEEKing through the individual bytes in memory. As 
we have seen, one advantage of this method (which goes back to 
the 8008, the predecessor of the 8080) is that the bytes can 
be added in the order in which they occur in memory, for 
multiple-precision operations. 

10.7 INC and DEC 

The INC ("increment") and DEC ("decrement") operations are 
also classified as arithmetic operations, because they add or 
subtract 1 from the registers, even though the value 1 can 
never be changed. There is a fundamental distinction between 
the single- and double-register INC and DEC instructions. INC 
r and DEC r affect the condition codes, but INC ss and DEC ss 
do not. 	Unfortunately, Zilog uses the same mnemonic in each 
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case, so the only way to keep it straight is to note carefully 
the operands. 	(In Intel's 8080 mnemonics, "INC ss" and "DEC 
ss" are replaced by "INX s" and "DCX s". "X" is always used 
for double registers, and "s" is the first register of the 
pair.) 

INC and DEC should always be used when you want to add or 
subtract only one from a register, because the operation 
requires only one byte and executes in 4 T cycles. These are 
also convenient when you need to step through a series of 
bytes one-at-a-time, as we saw above in the multiple-precision 
addition and subtraction loops. 

Single registers can be used to hold a count of the number 
of times a series of instructions is to be executed. 	This 
feature is provided automatically in the DJNZ instruction, 
which DECrements B and branches to a nearby location if B is 
non-zero (it is a jump relative). Up to 256 iterations can be 
achieved by this method, because the register is decremented 
before the "JR NZ" occurs (to get 256 iterations, start B with 
the value zero). Similar operations can be carried out using 
any single register, although two instructions (the DEC and JR 
or JP NZ) are needed. 

A similar procedure can be instituted with the double 
registers, but the fact that these INCs and DECs do not affect 
the condition codes forces a revision in the procedure. The 
use of two registers makes it possible to go through up to 
65536 iterations in a loop. A special process is necessary to 
test whether the value in the double register is zero. One of 
the most common methods of doing this is the following, which 
tests whether HL is zero: 

LD 	A,H 	;load A from H 
OR 	L 	;or A with L 
JR 	NZ,LOC ;if non-zero, continue 

(Why this works will be explained later in our discussion of 
logical operations.) The disadvantage of this method is that 
it destroys the value in the accumulator, but practically any 
other method would either do the same or would be more complex 
than simply saving and restoring A. 



FLOATING-POINT AND 
rir 

11.1 Floating-Point Numbers 

FLOATING-POINT NUMBERS are the most common method by which 
numbers containing both an integer portion and a tractional 
portion are represented in computers. A floating-point number 
contains a SIGN, EXPONENT, and FRACTION. There is also a sign 
of the exponent. The Level II Basic Reference Manual claims 
that the fraction contains a certain number of SIGNIFICANT 
FIGURES. Actually, it contains a number of significant BITS, 
which more or less correspond to a number of significant 
decimal digits. 	The only difference between single- and 
double-precision numbers is the number of bytes used for the 
fraction. Single-precision numbers use three, and double- 
precision seven. 	The exponent is the same in each case and 
requires one byte. The accuracy of double-precision numbers 
is greater, but still not perfect, as we will see below. 

Floating-point numbers on the TRS-80 have the following 
format: the last byte contains the exponent, and the order of 
the first three bytes is "backwards" in memory. The last byte 
is what you will see if you PRINT PEEK(VARPTR(X)+3) for 
single-precision numbers, where X is the number, or 
PEEK(VARPTR(X)+7) for double precision numbers. The first bit 
represents the sign of the exponent, 1 being used for positive 
exponents and 0 for negative exponents. A "positive" exponent 
means that the binary point (same as "decimal point" but for 
binary numbers) is moved to the right, and a "negative" 

94 
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exponent means that it is moved to the left, producing a value 
less than 1. 	The exponent itself is contained in the 
remaining seven bits, and thus can range from -127 to +127. 
There is one exception: if this whole byte is zero, then the 
number itself is zero. 2 to the 127th power allows a range of 
values up to about 10 to the 37th or 10 to the -39th power. 
Any number in this range is represented with about six 
significant figures for single-precision numbers, or 16 
significant figures for double-precision numbers. 	The 
following are some examples of floating-point exponents: 

hexadecimal 
81 

83 

7D 

80 

binary  
1000 0001 

1000 0011 

0111 1101 

1000 0000 

meaning  
+1: poria7 moved one bi-E-175.  
the right 
+3: point moved 3 bits to 
the right 
-3: point moved 3 bits to 
the left 
+0: the point is immediately 
to the left of the first bit 

The fraction of the number gives its value and is contained 
in the remaining bytes in a backwards order. In addition, the 
first byte of the fraction, stored next to last in memory 
(VARPTR(X)+2 for single-precision numbers), gives the SIGN of 
the number in its leftmost bit, 0 indicating a positive and 1 
a negative number. 	There is no difference between positive 
and negative numbers except for this bit (no two's-complement 
notation for floating-point numbers!). This leaves the most-
significant bit unaccounted for, and THIS BIT IS ALWAYS 
IMPLIED TO BE A 1. A fraction consisting of 3 bytes of zeros 
thus actually represents +1 binary. Now all we have to do to 
evaluate floating-point numbers is to remember that each 
binary bit represents a power of 2. Positive values equal 1, 
2, 4, 8, 	16, etc., and negative values 1/2, 1/4, 1/8, 1/16, 
etc. The following examples illustrate how some 
floating-point values are actually stored in memory: 

hexadecimal 
(order in 
	

binary fraction 
	

decimal 
memory) 
	

(correct order) 
	

value  
(a) 00 00 00 81 

	
1000 0000 0000 0000 0000 0000 

	
1.0 

The binary value of this number is 1 followed by all zeros. 
The exponent +1 means that the binary point is moved one bit 
to the right, producing 1.0000 (etc.). The sign of the number 
is positive. 
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(h) 	00 00 40 83 	1100 0000 0000 0000 0000 0000 	6.0 

When the exponent of +3 is applied, the binary number produced 
is 110.0, which equals decimal 6. 

(c) 00 00 40 81 	1100 0000 0000 0000 0000 0000 	1.5 

Moving the exponent one bit to the right produces 1.1 binary. 
".1" represents one-half in binary notation, so this number is 
1.5. 
(d) 00 00 FO 84 	1111 0000 0000 0000 0000 0000 	-15.0 

1111 binary equals 15, but don't forget that the first hit of 
the third byte is the sign of the number. 

(e) 00 00 F0 80 	1111 0000 0000 0000 0000 0000 	0.9375 

The exponent 0 means that the binary point is immediately to 
the left of .1111. This value is thus 1/2 + 1/4 + 1/8 + 1/16 
=0.9375. This example shows that, for values less than one, 
you don't always have exactly six significant figures. Here 
is a four-digit number represented completely correctly in 
only four bits. Most numbers do not have such accuracy. 

(f) CD CC 4C 7D 	1100 1100 1100 1100 1100 1101 	0.1 

Just looking at the binary value of this number tells you that 
it is a repeating fraction in binary form, just as 1/3 in 
decimal form gives .33333.... The exponent 7D equals -3, so 
the fraction is .00011001100 etc. The value is computed as 
1/16 + 1/32 + 1/256 + 1/512 etc. = .0625 + .03125 + .00390625 
+ .001953125 = .099609375, getting closer and closer to .1 as 
the process continues. 

These examples illustrate some of the problems that occur 
when using floating-point numbers. 	Many decimal numbers 
cannot be represented precisely without losing some tiny bit 
of accuracy. When many arithmetic operations are performed on 
the same values, the magnitude of this inaccuracy increases. 
This imprecision is a result of the method of number 
representation, and does not disappear when double-precision 
numbers are used, although the amount of error decreases. You 
must remember that the number always contains significant 
figures (bits). 	If you add 100000.0 and .0001 using single-
precision numbers, the result will be 100000 because of the 
loss of significance past the sixth digit. Figuring out the 
value represented by some number, or figuring the 
floating-point number corresponding to some value, is no easy 
task. 
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What these examples illustrate is that it is difficult 
enough to understand just how floating-point numbers are 
represented inside the computer, let alone how to do 
arithmetic on them. 	Each arithmetic operation requires a 
complicated subroutine that may execute thousands of machine 
instructions for each call. 	While Basic may be slow in 
general, it is usually preferable to perform such operations 
as floating-point calculations using Basic rather than 
assembly language. 

11.2 Binary-Coded-Decimal Numbers 

There is another number format frequently used with the 8080 
and Z-80 microprocessors. 	It was considered to be so 
important by the designers of these microprocessors that they 
included a special machine operation and two special flags to 
enable arithmetic operations to be done easily in this form. 
This number format is called BINARY-CODED-DECIMAL or BCD. The 
special operation is the DAA ("decimal adjust accumulator") 
instruction, and the flags are the half-carry (H) and 
Add/Subtract (N) flags, which are used only by DAA, although 
they are set or reset by many operations. 

The advantages of BCD numbers are that they are inherently 
very easy to understand, and any inaccuracies they contain are 
the same for decimal numbers with which we are so familiar. 
Although four bits can contain values from 0 to 15, the values 
from 10 to 15 are never used. Instead, when a DAA operation 
is performed, any values above 9 are adjusted, so that the 
maximum value contained in a digit is 9 and in a byte 99, the 
excess value being shifted into the carry bit. 

Any series of N BCD bytes contains N x 2 decimal digits. 
In our examples below, we will restrict our use of decimal 
numbers to two-byte quantities capable of holding values from 
0 to 9999. We will first illustrate some BCD numbers, and 
then arithmetic operations (addition and subtraction) 
performed on them. One convenient property of BCD numbers is 
that their decimal and hexadecimal values are the same. 

(a) decimal: 	1 	2 	3 	4 
binary: 	0001 0010 0011 0100 

(b) decimal: 	5 	6 	7 	8 
binary: 	0101 0110 0111 1000 

(c) decimal: 	9 	9 	9 	9 	(maximum 
binary: 	1001 1001 1001 1001 	value) 
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When arithmetic operations are performed on BCD numbers, we 
have to remember that there are no special operations that are 
different from binary additions and subtractions, but BCD 
oomboce moot be adjusted so that they never represent a value 
of more than 9 in any digit, This is where the special DAA 
operation is required. How it works may be seen from some 
examples: 

(d) decimal binary 
1234 0001 0010 0011 0100 

+ 5555 0101 0101 0101 0I01 
6789 3110 0111 1000 1001 

hexadecimal => 6 7 8 9 

Since the sum of any two digits is not greater than 9, no 
adjustment was needed here. 

(e) decimal  
6789 

+ llll  
7900 

hexadecimal ~~ 

binary  
0110 0111 1000 1001 
0001 0001 0001 0001  
0111 1000 I001 1010 

7 O 9 a wrong! 

When the sum of two digits is greater than 9, a correction 
in the form of a carry is required, just as it is when you add 
two digits by hand. The important and simple fact about this 
carry is that the computer can do it just by looking at each 
successive digit, starting with the least-significant one. 
This adjustment is made by means of the muA instruction. if 
the value in any 4-bit digit after an add operation is 
performed is greater than 9, 6 is added to it and a carry is 
added to the next digit, The right digit within the byte 
sends its carry to the left digit, and the left digit sends it 
to the next byte by means of the carry flag. If the result is 
greater than 9999, it neuunt be contained within two bytes 
anyway, so it languishes in the carry bit, and the result 
shows only the right fvoc digits. no long as maa is performed 
after each operation, the result will never get off. 

In example (m) above, if a uaa is performed after the first 
(rightmost) addition wbznb yielded 9n, a would be changed to 0 
and l added to 9, producing another 0 and setting the carry 
bit. When the carry to added to the next byte it produces 79, 
thus yielding the correct value of 7900 as the result. 

( f ) decimal binary --
9999 Tool lo0l l00l l00l 

+ llIl 0081 0001 0001 0001  
11110 A A a u 

oAo by +6: l- 1 1 1 carry: 1 
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Here we see that, after we perform the DAA operation, the 
result is 1110, which is correct except that the first digit 
is missing, but the carry bit is set. 

Writing a subroutine to perform BCD addition is really 
quite simple. The following subroutine uses index register IX 
as a pointer to the first operand and IY for the second. The 
result is stored in IX. The number of bytes in the BCD number 
is set to 2 by the LD 3,2 instruction, but could be set to a 
larger value by simply changing this number. 

BCDADD OR 	A 	;clear carry 
LD 	3,2 	;2-digit add 

ADDLP 	LD 	A,(IX) ;get first operand 
ADC 	A,(IY) ;add second operand 
DAA 	;adjust result 
LD 	(IX),A ;store result 
INC 	IX 	;point to 
INC 	IY 	;next bytes 
DJNZ 	ADDLP 	;continue till done 

This subroutine clears the carry bit at the beginning so that 
it can do all the additions in one loop using ADC. 

(g) 	decimal  
5432 

-1928  
3504 

hexadecimal 
DAA by -6: 

 

binary 

 

> 

0101 0100 0011 0010 
0001 1001 0010 1000  
0011 1011 0000 1010 

3 	B 	0 	A 	wrong! 
3 	5 	0 	4 	right 

How does the Z-80 know whether the last operation was an 
add or subtract, meaning that the DAA has to adjust the result 
by +6 or -6? The answer is that the N flag is set only by 
subtract operations and reset by add operations. Similarly, 
the half-carry flag is set only if the right 4 bits are 
greater than 9. The H flag is like an "internal" carry, since 
its only function is to adjust the left digit. 

These examples show that BCD arithmetic is easy to 
understand. Other advantages are the simplicity of converting 
numbers for printing them, which requires only a hexadecimal 
print routine, and the ability to insert a decimal point 
between any two digits in a series of bytes, for fractional 
arithmetic. 

Surprisingly, BCD arithmetic is not used by the TRS-80 for 
Level II Basic or any of the standard Radio Shack software. 
It thus remains one of the most underutilized resources of the 
TRS-80. 



LOGICAL AND 
BIT OPERATIONS 

12.1 Logical Operations 

There is another category of computer operations that are not 
as widely known as arithmetic operations. These are LOGICAL 
OPERATIONS. They all operate on the individual bits of the 
byte in the accumulator, which is compared to another byte 
specified as the operand. There are three operations executed 
by the Z-80: 	AND, OR, and XOR (exclusive OR). An AND 
operation produces a 1 bit in the result only if both the 
corresponding bits in the accumulator AND the operand are 1. 
OR produces a 1 if the bit in either the first operand OR the 
second operand, OR BOTH, are 1. XOR produces a 1 if either 
the bit in the first operand or the second operand, BUT NOT 
BOTH, are 1. These are summarized in the following table: 

binary 
accumulator 0000 1111 0 F 
operand 0011 0011 3 3 

result of AND 0000 0011 0 3 
result of OR 0011 1111 3 F 
result of XOR 0011 1100 3 C 

The carry bit is ALWAYS cleared (set to zero) by the 
logical operations. Logical operations never produce ones in 
bits unless they are already present in the operands. 	Their 
functions are to "combine" bits in various ways. 

100 

hexadecimal 
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The logical operations have several applications for which 
they are customarily used. AND is used to MASK OUT certain 
bits in a byte. A zero in the operand byte masks out a bit, 
and a one preserves it, if present. For example, in printing 
hexadecimal numbers, it is necessary to print the value 
corresponding to each 4-bit digit. If we want to print the 
least-significant digit, we need to mask out the left four 
bits. This could be done by an AND OFH or AND 15 instruction. 
(When "H" is appended to numbers, it indicates that they are 
hexadecimal.) 	Hexadecimal values are frequently specified as 
operands to logical operations because it is possible to 
translate them directly into bits. 

OR is used to "combine" the values of two bytes into one. 
For example, to print the value of a digit from 0 to 9, it is 
necessary first to discover the value to be printed, and then 
to convert it to ASCII form. The ASCII representations of the 
digits 0 to 9 are 30H to 39H. It is thus necessary to put the 
value 0 to 9 into the right four bits, and a "3" into the left 
four bits. Assuming that the right four bits contain a 0 to 
9, the "3" can be combined with the others by an OR 30H 
operation. 

Another use of OR is to clear the carry bit. The operation 
OR A, which ORs the accumulator with itself, changes no bit 
values in the accumulator, but resets the carry. AND A also 
works for this purpose. These are more efficient than any 
other method, because the instructions take only one byte and 
4 T cycles. 

Another use of the OR operation occurs when testing the 
value in a double register for zero. 	The sequence of 
operations: 

LD 	A,H 
OR 

will produce a zero in A only if the values in both H and L 
are zero. 

One of the most frequent applications of XOR is to zero the 
accumulator, which is done by the XOR A operation. This also 
clears the carry bit. Other uses of XOR are somewhat more 
complicated than the other logical operations. For example, 
it is possible to set up a "toggle switch" using the 
accumulator and an XOR operation. If A is set to 1 or 0, each 
time an XOR 1 operation is executed, the value in A will 
alternate between 1 and 0. 	This type of alteration is 
possible only between two values. 

Another such application on the TRS-80 occurs with the 
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blinking asterisks that appear in the upper right corner of 
the video display when cassette tapes are read. The ASCII 
value of the asterisk is 2AH, and that of the blank space is 
20H. 	The address of the upper right corner is 3C3FH. The 
following sequence of operations will cause the character in 
the right corner of the screen to change to the opposite 
value, alternating between an asterisk and a blank: 

LD 	A,(3C3FH) 	;get character 
XOR 	10 	;2AH - 20H = 10 
LD 	(3C3FH),A 	;replace new one 

12.2 Bit Operations 

Bit operations include manipulations on the individual bits 
within a register or memory location. 	One of the great 
improvements of the Z-80 microprocessor over the 8080 is the 
enormously increased number of bit operations that the Z-80 
executes. 	There are many different kinds of bit operations. 
They can be divided into the categories of rotate, shift, set, 
reset, test, and BCD instructions. 

12.3 Rotate and Shift Instructions 

SHIFT instructions move the bits within a byte from one 
position to the next, in a right or left direction. 	The bit 
on the end of the byte in the direction of the shift is lost, 
and a zero is shifted into the bit on the opposite end. 
ROTATE instructions are identical to shift instructions, 
except that the bit that would normally be lost is shifted 
around to the other side. All rotate and shift instructions 
on the Z-80 move only one bit, so that they need to be 
repeated to move the bits more than one position. 

Shift and rotate instructions are complicated by the fact 
that all of them use the carry bit in one way or another. 
Sometimes the carry participates as an "extra" bit, producing 
a 9-bit shift or rotate, and sometimes the carry is a 
duplication of the end bit. ARITHMETIC shifts preserve the 
SIGN hit (7) of the operand, whereas LOGICAL shifts have the 
sign participate along with the other bits. 	(These are the 
standard definitions of arithmetic and logical shifts. The 
Z-80's SLA ("shift left arithmetic") instruction is really a 
logical shift.) Most instructions are logical operations. We 
will first review the instructions executed by the Z-80 and 
then discuss applications. 

The first four instructions in this group are the only ones 
also executed by the 8080. They only operate on the 
accumulator, but they also require only one byte and execute 
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in 4 T cycles. 	They are therefore found in many existing 
programs: 

mnemonic description 
rotate A left 
circular 

rotate A left 

rotate A right 
circular 

rotate A right 

operation 
RLCA 

RLA 

RRCA 

RRA 

8-bit rotate: bit 7 
copied into both 
bit 0 and CY 
9-bit rotate: 
bit 7 => CY, 
CY => bit 0 
8-bit rotate: bit 0 
copied to both bit 7 
and CY 
9-bit rotate: 
bit 0 => CY, 
CY => bit 7 

The remaining instructions, all Z-80 only, allow a myriad 
of operands. Any register (except. F) may be specified, or any 
memory location addressed as (HL), (IX+d), or (IY+d). 	(There 
is some redundancy here in that A may be specified for these 
operations, duplicating the function of the instructions 
above.) We will list the rotate operations first, since they 
are identical to those above, except that they use different 
operands. In the following table, "s" means any register (A, 
B, C, D, E, H, or L) or (HL) , (IX+d) , or (IY+d): 

mnemonic 	description 	operation  
RLC 	s 	rotate left circular 	same as RLCA 
RL 	s 	rotate left 	same as RLA 
RRC 	s 	rotate right circular 	same as RRCA 
RR 	s 	rotate right 	same as RRA 

There are only three shift instructions on the Z-80, and 
they also allow any of the operands used for the above rotate 
instructions to be specified. One of the shifts is designated 
as a logical shift, and two shifts as arithmetic, even though 
the "arithmetic" left shift is really a logical shift as noted 
above. 	All of the shifts use the carry bit as a participant 
in the operation, in that the bit shifted off the end is 
shifted into the carry bit. 	These instructions are as 
follows: 

mnemonic description 	operation  
shift left arithmetic 	bits 0-7 shifted to 

bits 1-CY; bit 0=0 
shift right arithmetic bits 7-0 shifted to 

bits 6-CY; bit 7 
unchanged 

shift right logical 	bits 7-0 shifted to 
bits 6-CY; bit 7=0 

SLA s 

SRA s 

SRL s 



LOGICAL AND BIT OPERATIONS 	PAGE 104 

Shift and rotate instructions have many useful applica- 
tions. 	One of their most obvious uses is in positioning the 
bits within a byte in order to perform some function. 	For 
example, to print the value of a byte in hexadecimal form, it 
is necessary first to print the left 4-bit digit, and then the 
right 4-bit digit. Converting a digit to ASCII form requires 
putting the value into the right four bits and adding an 
offset. 	If the value is between 0 and 9, the offset is 30H, 
but if it is between 10 and 15, the offset is 37H, because 37H 
+ 10 = 41H (ASCII "A"). To move the left four bits over to 
the right, we could use the SRL operation four times in 
succession. 	This would automatically clear the right four 
bits, since zero is shifted into the left end. It would not 
necessarily be the best way of programming this function, 
however. Four SRL operations require 8 bytes and 32 T cycles 
to execute, assuming that the operand is in the accumulator. 
We could instead use four rotate instructions, and then mask 
out the left four bits with an AND instruction. Four RRA or 
RRCA operations require only 4 bytes and 16 T cycles, and the 
ensuing AND OFH requires 2 bytes and 7 T cycles. 

One of the most important applications of shift 
instructions is that of multiplication and division by powers 
of 2. When a byte is shifted left one bit, the value it 
contains is multiplied by 2, and when it is shifted right the 
value is divided by 2. This is illustrated by the following 
series of SLA operations: 

decimal CY 
- 5 

x 2=10 0 
x 2=20 0 
x 2=40 0 
x 2=80 0 

x 2=160 0 
x 2=320 1 

binary 	hexadecimal  
0000 0101 	0 5 	original value 
0000 1010 	0 A 	after 1st SLA 
0001 0100 	1 4 	after 2nd SLA 
0010 1000 	2 8 	after 3rd SLA 
0101 0000 	5 0 	after 4th SLA 
1010 0000 	A 0 	after 5th SLA 
0100 0000 	4 0 	after 6th SLA 

We can see that the result is no longer valid after the 
sixth SLA operation, because it should be a larger value than 
can be contained in a single byte. The carry bit can be used 
to test  whether this condition has occurred, however, so that 
a subroutine that uses this method can take account of it. If 
we were using signed integers, the result would be incorrect 
after the fifth SLA, since a 1 was shifted into the sign bit. 
In this case, we would have to check the S flag (P or M 
conditions). 

A more complicated extension of this principle can be used 
to implement a subroutine for multiplication by 10. This 
method depends on the fact that 10=8+2, both of which are 
powers of 2. The following sequence of instructions 
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multiplies the value in the accumulator by 10, using B to save 
the value after the first shift: 

SLA 	A 	;multiply by 2 
LD 	B,A 	;save in B 
SLA 	A 	;x 4 
SLA 	A 	;x 8 
ADD 	A,B 	;value x 8 + value x 2 

Additional information about multiplication and division is 
contained in chapter 13. 

12.4 Bit Set, Reset, and Test Operations 

SETTING a bit means setting it to 1. 	RESETTING it means 
setting it to 0. TESTING a bit, which is done by the "BIT" 
instructions, means a test for zero, the result being 
indicated by the Z flag. 	The important thing about these 
instructions is that they allow the same large number of 
operands as the rotate and shift instructions. 	In the 
following table, "s" indicates any of the operands A, B, C, D, 
E, H, 	L, 	(HL), 	(IX+d), or 	(.IY+d). 	"n" indicates the bit 
number, which is 0 to 7: 

mnemonic 

 

description 
bit test 
set bit 
reset bit 

operation 
BIT 	n,s 
SET 	n,s 
RES 	n,s 

test bit n in s 
bit n in s set to 1 
bit n in s set to 0 

These bit operations have many obvious applications. 	One 
of them is simply to use one byte as a test word for up to 
eight "yes-no" options. 0 can indicate "no" and 1 "yes" 	(or 
vice versa). In our example of multiplication by 2 above, we 
could test for the presence of the sign bit by a "BIT 7,A" 
instruction. 

12.5 BCD Operations 

There are two special BCD rotate instructions that have highly 
specialized applications. 	(BCD numbers were described in 
chapter 11. 	They consist of two 4-bit digits containing 
values from 0 to 9 in each digit. For the purpose of these 
operations, the digits can contain any values.) The two BCD 
rotates, RLD and RRD, operate jointly on the contents of the 
accumulator and on the memory location addressed by the HL 
register pair, and they shift four bits at a time. 	In each 
case, the left four bits of A (bits 4-7) are unchanged, and 
the remaining three digits, contained in bits 0-3 of A, 
together with the two BCD digits in (HL), are shifted. 	RRD 
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shifts to the right and uco to the left. 	The operation of 
these instructions can be diagrammed as follows (abvwimJ the 
contents as decimal digits rather than in binary form): 

A bits 
original values 
after nQ} 
original values (repeated) 
after oao 

4-7 0-3 (ac) bits 4-7 0-3 
0 

--5— 
4 3 

0 4 ] 5 
0 5 4 ] 
0 3 5 4 

The uses of these operations are clearly restricted to 
specialized applications involving uco numbers, which are not 
used by any of the standard cn8-80 software. 



SOFTWARE 
MULTIPLICATION 

AND DIVISION 

One of the greatest limitations of all 8-bit microprocessors 
is that they have no instructions that execute multiplication 
and division. 	Therefore, all such operations must be 
performed through programming, by means of repetitively 
executing additions and subtractions. 	This chapter is 
intended to show the reader how these operations are carried 
out in general, without covering the subject exhaustively. We 
will restrict our consideration to integer operations of 
various byte lengths. Multiplication and division are two of 
the most complicated and specialized subjects of microcomputer 
programming. Arithmetic computing ability is one of the few 
areas where the newer 16-bit microprocessors have a distinct 
advantage over the Z-80 and the 8080. 

You may never have been aware of these limitations of the 
TRS-80, because Level II Basic executes all arithmetic 
operations -- even exponentiation. 	When you realize that 
Level II contains these facilities for three different number 
formats, you can better appreciate the extent to which its 
designers have gone for your convenience. The one thing you 
probably do notice, particularly about exponentiation, is that 
it takes a noticeable amount of time to execute. 	A few 
seconds to evaluate one complicated mathematical formula may 
correspond to millions of machine operations. 

107 
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13.1 8-Bit Multiplication 

First, let us note a few general points about multiplication. 
The two numbers that are multiplied together are called the 
MULTIPLIER and the MULTIPLICAND, and the result is called the 
PRODUCT. 	The product of two numbers of a given length may 
require twice as many digits to contain the result (99 x 99 = 
9801). 	In binary terms, the product of two 8-bit numbers may 
require 16 bits, and the product of two 16-bit numbers may 
require 32 bits. (The maximum value that can be contained in 
a byte is 255. 255 x 255 = 65025, which requires 16 bits but 
is less than the maximum value that can be contained in 16 
bits.) Any routines that we write for multiplication will 
have to take this fact into account. 

When we learned to do arithmetic in school, we learned that 
multiplication can be performed by repetitively adding one 
number another number of times. 	The most direct type of 
multiplication subroutine can work in the same way. The 
following example makes use of this method. 	When it is 
entered, the multiplicand is in A and the multiplier in B. The 
result is returned in HL, to reflect the fact that the product 
of two 8-bit numbers may extend to 16 bits, as mentioned 
above. 

;unsigned 8-bit multiplication subroutine 
;on entry, A=multiplicand, B=multiplier 
;on exit, HL=product, B=0 
MULT8P LD 	L,A 	;multiplicand to L 

LD 	H,0 	;zero high order bits 
INC 	B 	;test B 
DEC 	B 	;for zero 
JR 	Z,ZERO ;B=0 
DEC 	B 	;if B=1, 
RET 	Z 	;A=product 
PUSH 	DE 	;save DE 
LD 	D,H 	;move HL 
LD 	E,L 	;to DE  

MULOOP ADD 	HL,DE 	;add multiplicand 
DJNZ 	MULOOP ;continue B (-1) times 
POP 	DE 	;restore DE 
RET 	;done 

ZERO 	LD 	L,0 	;result is zero 
RET 

This subroutine works by placing the multiplicand into both 
L and E, and clearing H and D. DE is added to HL (B-1) times. 
If B=1, we return after loading HL because A times 1 is A. If 
B=0, the result is zero because anything times zero is zero. 
The method of INCrementing and DECrementing B is a quick way 
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to test whether B is zero, without changing the values in any 
register. 

One of the problems with this subroutine is that it is 
valid only for UNSIGNED numbers. If we want to take the sign 
bit into account, another procedure is necessary. The 
simplest way of implementing signed multiplication is to check 
the signs on entry, do the multiplication on positive numbers 
as above, and readjust the sign on exit, if necessary. 

The following subroutine uses repetitive addition to 
perform 8-bit signed multiplication, using the same registers 
as above. The XOR operation is used to create the sign of the 
product ((+ x +) and (- x -) are both positive. Only (+ x -) 
and (- x +) are negative). OR A (which clears the carry bit 
and sets the condition codes to reflect the value of A without 
changing it) is used to test for positive or negative values. 

;signed 8-bit multiplication by repetitive addition 
;on entry, A=multiplicand, B=multiplier 
;on exit, HL=product, B=0, A destroyed 
MULT8 	LD 	L,A 	;save A temporarily 

LD 	H,0 	;zero high bits 
INC 	B 	;test for 
DEC 	B 	;B=0 
RET 	Z 	;product=0 
XOR 	B 	;form product sign 
PUSH 	AF 	;save sign in stack 
LD 	A,8 	;test value of B 
OR 	A 
JP 	P,TSTA 	;if + skip 
NEG 	 ;create positive equivalent 
LD 	B,A 	;replace 

TSTA 	LD 	A,L 	;retrieve A 
OR 	A 	;test value 
JP 	P,MUL 	;if + 
NEG 	 ;positive equivalent 
LD 	L,A 	;replace in L 

MUL 	DEC 	B 	;if B=1, 
JR 	Z,ADJUST 	;product=multiplicand 
PUSH 	DE 	;save DE 
LD 	D,H 	;move HL 
LD 	E,L 	;to DE 
ADD 	HL,DE 	;add multiplicand 
DJNZ 	$-1 	;continue till B=0 
POP 	DE 	;restore DE 

ADJUST POP 	AF 	;retrieve sign 
OR 	A 	;test sign of product.  
RET 	P 	;ok if plus 
LD 	A,L 	;form negative equivalent 
CPL 	 ;complement 
LD 	L,A 	;replace in L 



SOFTWARE MULTIPLICATION AND DIVISION 	PAGE 110 

LD 	A,H 	;do same with H 
CPL 
LD 	H,A 	;replace 
INC 	HL 	;NEG=CPL+1 
RET 	 ;done 

While multiplication by repetitive addition does work, it 
is extremely slow compared with other ways of implementing the 
operation. 	It should be used only when small numbers are 
being multiplied. The usual way in which multiplication is 
carried out involves a process similar to the paper-and-pencil 
method of performing the operation, where you align the 
product of each additional digit one position to the left to 
indicate that it is a greater power of 10, such as in the 
following examples: 

123 	 456 
x 456 	x 123 

      

 

738 
615 
492 

  

1368 
912 
456 

      

56088 	56088 

A binary multiplication might be written out as follows: 

	

binary 	hexadecimal 	decimal 

	

0010 1011 	2BH 	43 

	

x 0001 0101 	15H 	21 

	

0010 1011 	387H 	43 
0 0000 000 	 86 
00 1010 11 
000 0000 0 	 903 
0010 1011 

0011 1000 0111 

Note that it is very easy to write out the product of a 
binary number, because the result is either the original 
number or zero. In the first, third, and fifth rows above, we 
have the same number, the multiplicand, the only difference 
being the vertical alignment. Spaces are placed every four 
bits to increase readibility. 

This method of multiplication, shown below, makes use of 
the fact that when you add the value in the HL register pair 
to itself, the result is shifted left one bit: 
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0000 1010 
0000 1010 

0001 0100 

0010 1011 
0010 1011 

0101 0110 

hexadecimal 
0A2BH 
0A2BH 

1456H  

decimal 
2603 
2603 

5206 

The subroutine below uses this principle to create unsigned 
multiplication, as above. 	The bits of the multiplier are 
tested successively, and the multiplicand is added to the 
product if the tested bit is one. If it is zero, the addition 
is skipped. The product is then shifted left to be in 
position for the next bit. 	This subroutine uses the same 
registers as those above. 

;unsigned 8--bit multiplication 
;on entry, A=multiplier, B=multiplicand 
;on exit, HL=product, B=0, A destroyed 
MULT8P PUSH 	DE 	;save DE 

LD 	E,B 	;multiplicand to E (LSB) 
0,0 
	

;clear high bits of DE 
B,8 
	

;8 bit multiply 
HL,0 
	;zap product 

HL, HL 
	;shift product left 1 bit 

;shift multiplier bit into C 
NC,MULP2 
	;skip addition if zero 

HL, DE 
	;else add multiplicand 

MULOOP 
	;continue through 8 bits 

DE 
	;restore DE 

;done 

13.2 16-Bit Multiplication 

16-bit multiplication can be carried out in a manner exactly 
analogous to 8-bit multiplication, as long as we remember that 
the product may have to occupy 32 bits. 	If we want to 
implement a practical method for 16-bit operations, as in 
Level II Basic integer arithmetic, then we would say that 
OVERFLOW exists when the product requires more than 16 bits. 
This could either cause an error condition, or we could simply 
use the 16 low-order bits, producing a result modulo 65536. 

The following subroutine performs unsigned 16-bit 
multiplication, on a multiplier and multiplicand contained in 
the BC and DE register pairs. 	The low-order bits of the 
product are returned in HL, and the high-order or overflow 
bits in DE. 	It is the calling program's responsibility to 
test DE for zero to determine whether overflow has occurred, 
and proceed appropriately. 	This subroutine uses A as a 
counter for the number of bits in the operation, and uses the 

LD 
LD 
LD 

MULOOP ADD 
RLCA 
JR 
ADD 

MULP2 	DJNZ 
POP 
RET 
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more efficient method of shifting the product left for each 
successive bit rather than repetitive addition. 

;16-bit unsigned multiplication 
;on entry, BC=multiplicand, DE=multiplier 
;on exit, product in DE (high-order) and HL (low-order) 
MULT16 LD 	A,16 	;bit count 

LD 	HL,0 	;zero initial product 
MLT1 	ADD 	HL,HL 	;shift product left 1 bit 

RL 	E 	;shift low product to carry 
RL 	D 	;multiplier bit to carry 
JR 	NC,MLT2 	;skip if multiplier bit 0 
ADD 	HL,BC 	;else add multiplicand 
JR 	NC,MLT2 	;skip if no carry to hi bits 
INC 	E 	;increment 3rd byte 
JR 	NZ,MLT2 	;skip if no carry to 4th byte 
INC 	D 	;increment 4th byte 

MLT2 	DEC 	A 	;bit count 
JR 	NZ,MLT1 	;continue till 0 
RET 	 ;done 

The "RL E" operation shifts the left bit of register E into 
the carry, and the immediately following "RL D" shifts the bit 
from the carry into bit 0 of D and bit 7 of D to the carry. 
This is, in effect, a double-precision left shift. The last 
bit shifted into D is the bit that we test for the 
multiplication, and if it is zero we skip the intervening 
steps. Once the multiplicand has been added, we have to find 
out if there is a carry to the third or fourth bytes. Since 
the "ADD HL,BC" operation produces a carry in this case, all 
we need to do is to test the carry bit after this operation. 
If there is one, E is incremented, and then we need to know if 
there is a carry from E to D. Unfortunately, the "INC E" 
operation does not affect the carry, but the only time a carry 
would be needed would be when the value of E was 1111 1111 
binary, producing zero after the incrementing. We can 
therefore test the zero flag in this instance. 

Signed 16-bit multiplication can be done in the same manner 
as signed 8-bit multiplication, the only additional 
complication being that negation of the product must he 
carried out on all four bytes of the result. The following 
subroutine carries out this procedure, using the same 
registers as above. 

 

;signed 16-bit multiplication 
;on entry, multiplier and multiplicand in BC and DE 
;on exit, product in DE + HL 
MPY16 	LD 	A,B 	;determine product sign 

XOR 	D 	;sign in bit 7 of high byte 
PUSH 	AF 	;save sign in stack 
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LD 	A,B 	;test sign 
OR 	A 	;of multiplier 
JP 	P,MPY1 	;skip if positive 
LD 	HL,S 	;negate BC by subtracting 

;from zero. No need to clear 
SBC 	HL,BC 	;carry because of prey. OR A 
LD 	B,H 	;transfer HL 
LD 	C,L 	;to BC 

MPY1 	LD 	A,D 	;test sign 
OR 	A 	;of multiplicand 
JP 	P,MPY2 	;ok if plus 
LD 	HL,0 	;negate DE 
SEC 	HL,DE 	;by subtracting from zero 
EX 	DE,HL 	;transfer to DE by exchange 

MPY2 	LD 	A,16 	;bit count 
LD 	HL,0 	;initial product 

MPY3 	ADD 	HL,HL 	;same method as above 
RL 	E 	;(see comments above) 
RL 	D 
JR 	NC,MPY4 
ADD 	HL,BC 
JR 	NC,MPY4 
INC 	E 
JR 	NZ,MPY4 
INC 	D 

MPY4 	DEC 	A 
JR 	NZ,MPY3 
POP 	AF 	;retrieve sign of product 
OR 	A 	;test it 
RET 	P 	;done if plus 
XOR 	A 	;form negative equivalent 
SUB 	L 	;by subtraction from zero 
LD 	L,A 	;replace L 
LD 	A,0 	;clears A but not carry 
SEC 	A,H 	;propagate carry to 2nd byte 
LD 	H,A 	;replace H 
LD 	A,0 	;clear A but not carry 
SBC 	A,E 	;3rd byte 
LD 	E,A 	;replace 
LD 	A,0 	;clear A but not carry 
ABC 	A,D 	;4th byte 
LD 	D,A 	;replace 
RET 	 ;done 

This subroutine uses the method of producing a negative 
equivalent of a positive number by subtracting it from zero. 
The negation of the product propagates the carry bit through 
four bytes (from L to H to E to D). 
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13.3 8-Bit Division 

When division is performed, a number called the DIVIDEND is 
divided by the DIVISOR, producing a QUOTIENT and a REMAINDER. 
As long as we are restricting our consideration to integers, 
we have only to return these two values and not worry about 
their meaning. When performing division, we have the opposite 
situation from multiplication with regard to the magnitude of 
the numbers involved. A 16-bit dividend may be divided by an 
8-bit divisor to produce an 8-bit quotient. There is one 
consideration that must be taken into account here. 	The 
quotient must be able to be contained in 8 bits. If this is 
not true, a DIVIDE FAULT condition exists. In addition, the 
divisor must not be zero -- at least, in any subroutine that 
we write for division, we must guard against causing the 
program to go into an infinite loop on a divide-by-zero. 

As with multiplication, the simplest kind of division to 
understand is a method that uses successive subtractions. The 
following subroutine parallels the unsigned 8-bit 
multiplication above. On entry, HL contains the dividend and 
A the divisor. On exit, the quotient is returned in B and the 
remainder in L. The previous value of DE is lost. 

;unsigned 8-bit division 
;on entry, HL=dividend, A=divisor 
;on exit, B=quotient, L=remainder, DE destroyed 
DIVBP 	OR 	A 	;test A for zero 

JR 	Z,DZERO 	;divide by zero 
LD 	B4O 	;zero initial quotient 
LD 	E,A 	;divisor to low bits of. DE 
LD 	D,0 	;zero high bits 

DIVLP 	OR 	A 	;clear carry 
SBC 	HL,DE 	;subtract divisor 
JP 	M,REM 	;if negative, done 
INC 	B 	;increment quotient 
JR 	DIVLP 	;continue 

REM 	ADD 	HL,DE 	;find remainder 
RET 	 ;done 

DZERO 	 ;set error code 

This subroutine makes no effort to catch a divide fault 
condition. 	It simply allows the process to continue by 
incrementing B until HL goes negative. Therefore, the result 
is actually the quotient modulo 256, and may be incorrect. 

The method of successive subtraction is also very slow, and 
a process of shifting, similar to that for multiplication, can 
be implemented instead. The following subroutine achieves the 
same result as that above, but uses only eight subtractions. 
The quotient is returned in L and the remainder in H. 
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;unsigned 8-bit division 
;on entry, HL=dividend, A=divisor 
;on exit, L=quotient, H=remainder 
DIV8P 	LD 	B,8 	;bit count 

LD 	E,0 	;clear low-order byte 
LD 	D,A 	;DE=divisor 

DV1 	ADD 	HL,HL 	;shift divisor left 
SBC 	HL,DE 	;subtract divisor 
JR 	C,DV2 	;if C then high dvdnd < dvsr 
INC 	HL 	;if NC set quotient bit to 1 
JR 	DV3 	;skip following add 

DV2 	ADD 	HL,DE 	;restore high dividend 
DV3 	DJNZ 	DV1 	;continue for 8 bits 

RET 	 ;done 

The "ADD HL,HL" at DV1 clears the lowest bit of L, which 
will be used to hold the quotient bit. 	Note that the 
subtraction of the divisor affects only the high-order byte, 
because we placed it into D and cleared E before starting. If 
the subtract produces a carry, then the high-order dividend 
was less than the divisor -- in other words, the subtract was 
not valid. 	In this instance, the bits are restored by the 
following "ADD HL,DE". 

Now let us examine the divide fault condition more 
carefully. First, the highest bit of the dividend must not be 
a one, at least if the above method is used, because the "ADD 
HL,HL" will shift it out into the carry, before the first 
subtraction. 	Second, the divisor cannot be zero. In the 
remaining instances, the divide fault can exist only if the 
high-order byte of HL (H) is equal to or greater than the 
divisor (A). Some examples will clarify this: 

HL = 	16384 4000H 
A = 	48 30H 

16384 / 48 = 	341 	R 16 155H 

HL = 	28672 7000H 
A = 	64 40H 

18672 / 64 = 	448 	R 0 1C0H 

HL = 	28672 7000H 
A = 	112 70H 

28672 / 112 = 	256 	R 0 100H 

HL = 	16384 4000H 
A = 	80 50H 

28672 / 80 = 	204 	R 64 CCH 

Each of the quotients in the 	first three examples are 
greater than 255, requiring an additional 	byte. 	This byte 
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comparison of A with H can be used as a method of checking for 
a divide fault. 	The following is an extension of the 
preceding subroutine: 	when added to the beginning, it will 
jump to the location DFAULT (not shown) if the divide fault 
condition exists, otherwise proceed as before. 

;check for divide fault condition 
DIV8F 	BIT 	7,H 	;test high bit of H 

JR 	NZ,DFAULT 	;divide fault if 1 
CP 	H 	;compare high dvdnd, divisor 
JR 	C,DIV8P 	;ok if divisor less 
JR 	DFAULT 	;else divide fault 

DIV8P 	 ;(as above) 

The "JR C,DIV8P" also takes care of the situation where A 
is zero, because in that case H cannot be less than A. 

13.4 16-Bit Division 

By 16-bit division, we mean of course division of a 32-bit 
dividend by a 16-bit divisor producing a quotient and 
remainder of 16 bits each. 	A subroutine to perform this 
operation is a simple extension of the 8-bit subroutines 
above. The following subroutine divides the 32-bit dividend 
in H, L, B, and C by the 16-bit divisor in DE. The quotient 
is returned in BC and the remainder in HL. 	If there is a 
divide fault, the program jumps to location DFAULT (not 
shown). 

;16-bit unsigned division 
;on entry, dividend in H,L,B,C (highest to lowest), 
;divisor in DE 
;on exit, quotient in BC, remainder in HL, A=0 
DIV16 	BIT 	7,H 	;test highest divident bit 

JR 	NZ,DFAULT 	;divide fault if 1 
PUSH 	HL 	;save high dividend bytes 
PUSH 	DE 	;save divisor 
OR 	A 	;clear carry 
SBC 	HL,DE 	;subt. divisor frm hi dvdnd 
JR 	NC,DFAULT 	;fault if NC 
POP 	DE 	;get back divisor 
POP 	HL 	;get back high dividend 
LD 	A,16 	;bit count 

DIVD1 	SLA 	C 	;shift dividend left 
RL 	B 	;shift into B 
ADC 	HL,HL 	;add HL + carry from B 
SBC 	HL,DE 	;subtract divisor 
JR 	NC,DIVD2 	;ok if no carry 
ADD 	HL,DE 	;else add back 
JR 	DIVD3 	;try next bit 
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DIVD2 	INC 	C 	;set quotient bit to 1 
DIVD3 	DEC 	A 	;decrement bit count 

JR 	NZ,DIVD1 	;continue 16 times 
RET 	 ;done; 

The "SLA C" shifts the lowest byte of the divident left, 
clearing bit 0 and shifting bit 7 into the carry. The 
following "RL B" shifts the carry into bit 0 of B, thus making 
this a 16-bit shift. The following "ADC HL,HL4  shifts HL left 
one bit, but it also picks up the carry from bit 7 of B. 	The 
bit vacated by the "SLA C" is where the quotient is stored, 
and the quotient is propagated into B by the double left 
shift. 

A 16-bit signed divide subroutine is not shown, although it 
is a simple matter to construct one using the same method 
shown above for 8-bit division. 
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Transferring data between memory and the cassette tape 
recorder is similar to reading the keyboard or displaying 
characters on the video monitor. It is not really necessary 
for a programmer to know bow such a transfer works, as long as 
he knows how to use the oom subroutines that carry out the 
essential opecatioua. one important difference between the 
keyboard and video display on the one hand, and the cassette 
recorder on the other, is that the former are memory mapped, 
whereas the oaoaotta recorder is interfaced through an 
input/output port, number 255 (hexadecimal rr), which also 
controls the 32- or 64-character mode of the video display. 
Thus, only certain bits of this port are used. The disks and 
Iioa printer are also memory-mapped, whereas the RS-232-C 
interface and various other peripherals are interfaced through 
ports. The zmS-80 has much comn for expansion of input and 
output de:i:eo using oitbcc meth:d, 

The addresses of n0m subroutines that are used for cassette 
input and output have been mentioned above in chapter 5, but 
they will be reviewed here in more detail. All are located 
between addresses 0lo9B and 03138. ("o^ is often appended to 
addresses to remind you that they are hexadecimal numbers.) 

118 
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14.1 Cassette ROM Subroutines 

Address 	Function  
01F8H 	Turns cassette oft. Uses register A. 
0212H 	"Define drive": A=0 for cassette 1 or 1 for 

cassette 2. 
Turns on the proper cassette drive and selects it 
for subsequent operations. 

0235H 	Read byte, which is returned in A. 
Uses no other registers. 

0264H 	Write byte in A to cassette. 
Uses no other registers. 

02870 	Write leader and sync byte. Uses AF, C. 
02960 	Read leader and sync byte. Uses AF. Two 

asterisks appear in the upper right corner of the 
video display when leader and sync byte are found. 

03140 	Reads two bytes (LSB/MSB) and transfers to HL. 
Uses AF. 

All cassette input and output operations in assembly 
language can be done using these subroutines. 	All standard 
tape formats are readable. Some programmers have developed 
non-standard methods that encode the bits in some different 
way. 	These operations are beyond the scope of this 
discussion. 

The beginning of a file on the cassette tape is signified 
by a "leader and sync byte", which is actually a succession of 
255 zeros followed by A5 (the sync byte). Each bit of data is 
read from the tape separately. This means that the timing of 
the routine that reads the bits is extremely crucial. This is 
why you must disable interrupts (CMD"T") in Disk Basic when 
reading cassettes. It is also why TRS-80 owners who have had 
the clock speed modified must switch to the older, slower 
speed in order to read standard cassette tapes. 

Once the cassette tape is turned on and the leader and sync 
byte located or written, it is the programmer's responsibility 
to keep up with the speed of the cassette in order to read or 
write data properly. (Writing data may be less crucial than 
reading it.) The data-transfer speed of the cassette is 500 
baud ("baud" means "bits per second"), so that a bit must be 
read or written every 2 milliseconds. 	What this means is 
that, for most purposes, all you can do is to read or write 
data into or out of memory and stop the cassette when you want 
to do some computation. Each time you stop the cassette, you 
must start it again with a leader and sync byte combination, 
to make sure that no data is lost due to the start and stop 
motion of the cassette. Any program that does not keep up 
with the 500-baud data transfer rate will lose bits of data, 
thus reading incorrect values. 
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14.2 Tape Formats 

To keep up with the cassette's speed, standard tape formats 
have been developed by Radio Shack to indicate what the data 
on the tape represents, where it goes, when to stop the 
cassette, and what to do after stopping. There are four 
standard tape formats: Basic programs, Basic data, machine-
language object tapes (the SYSTEM format), and 
Editor/Assembler symbolic-program files. Other formats, such 
as data files for the Electric Pencil program, have been 
devised for various reasons, but will not be discussed here. 

1. Machine Language Object (SYSTEM) Tapes 

An "object program" is a program in machine code ready to 
run on a computer. When stored on an external medium such as 
a cassette tape, it is necessary only to dump it into memory 
and jump to the starting location. 

The object-program format is also known as the SYSTEM 
format because of the Basic command used to read such tapes. 
Data is written on the tape in the form of blocks less than 
256 bytes in length. 	Each block begins with a header byte 
identifying what kind of block it is. There are three types 
of blocks: 	FILENAME, DATA, and ENTRY. FILENAME is first, 
followed by any number of DATA blocks. The ENTRY block comes 
last, after which the cassette is turned off. The whole tape 
has the following structure: 

55H 
6 bytes (ASCII), filled with 
blanks if name less than 6 
characters. 
3CH 
Number of data bytes to 
follow (1-256) 
2 bytes, LSB/MSB, indicating 
where data is to be loaded 

78H 
2 bytes, LSB/MSB. 

(Leader and Sync Byte) 
Filename Header 
File Name 

Data Header 
Count Byte 

Load Address 

(Other Data Blocks) 
Entry Header 
Entry Address 

The fact that each data block has its own address means 
that data can be loaded anywhere in memory, and that the same 
tape can contain data that goes into several different areas. 
Usually, only the Editor/Assembler program produces such tapes 
(through the use of different ORG statements), because 
monitors such as TBUG or Monitors 3 and 4 (as well as the 
TAPEDISK utility program) require that you specify one 
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contiguous block. If the checksum is wrong, or if the header 
byte is not 55, 3C, or 78, an error is produced. 	If reading 
the cassette under SYSTEM, a "C" replaces one of the asterisks 
in the upper right corner. 

2. Editor/Assembler Source Program Tapes 

Source tapes for the Editor/Assembler program have a tormat 
different from other tapes: 

(Leader and Sync Byte) 
Filename Header 	D3H 
File Name 	6 bytes (ASCII), padded with 

blanks 

Individual program statements: 
Line Number 	5 bytes, ASCII-encoded, 

with bit 7 (parity) set 
Statement Code 	(Any length). TAB (right 

arrow) key encoded as 09. 
Carriage Return 	0D (ENTER key) 
(Last statement - END - encoded in same manner) 

End Byte 	lAH (shift down-arrow) 

This format is essentially a dump of the memory area that 
holds the source program when running the Editor/Assembler 
program, except that when the program resides in memory, the 
line numbers are stored in two bytes (LSB/MSB). The tape thus 
takes more room than the program in memory. This is also the 
format used to hold symbolic files on disk. 

3. Level II Basic Program Tapes 

A Level II Basic program tape is essentially a dump of the 
program as it is stored in memory. This is not the way in 
which you type it in, nor the way it is listed when you print 
it, because all of the key words are translated into a binary 
code. Statement numbers are stored in two bytes. This is why 
they may have a maximum value of 65529 (65535 less a few 
values used for special purposes). The only recognizable data 
is the ASCII text in PRINT statements, variable names, and 
constants. The complete format is as follows: 
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(Leader and Sync Byte) 
Header 
File Name 
Program Statements 

End Flag 

D3 D3 D3 
First byte only, ASCII 
Starts loading directly into 
42E9H (Level II) 
or 68BAH (Disk Basic) 
00 00 00 

This is also the standard format used to store Basic 
programs on disk, except that disk storage also provides the 
"ASCII" option (SAVE "PGM",A), which stores the program in 
exactly the same way that it is printed by a LIST command. 

4. Level II Basic Data Tapes 

Because of the one important point mentioned above -- that 
you must write a new leader and sync byte each time that you 
start or stop the cassette -- Level II Basic data tapes are 
stored in a very inefficient manner. Each time a PRINT #-1 or 
INPUT #-1 is executed, a new leader and sync byte is written 
or read. 	A Basic program can take advantage of this 
situation, by trying to include as much data as possible 
within a single statement, but it is impossible to escape the 
fact that most of the time is spent reading the leader and 
sync bytes. 

The exact format of a data tape is so simple that a table 
is not necessary. 	After the leader and sync byte comes the 
data itself, terminating in a carriage return. 	Individual 
items in the list are separated by commas. For this reason a 
comma cannot be included in a string saved on cassette tape 
(nor can a carriage return). Strings are written simply as a 
series of characters. All numbers, whether they represent 
integers or single- or double-precision values, are stored as 
ASCII strings surrounded by blank spaces. 	Thus, a number 
could be written as an integer and read as a single- or 
double-precision number or string. 	The decimal point is 
included if present. A string consisting of numerals can be 
written as a string and read as a number, but if it contains 
any non-numerical characters, an error is produced. The 
warning in the LEVEL II BASIC REFERENCE MANUAL is not totally 
correct. 	It is possible to read data in some form other than 
that in which it was written, but you must always read the 
same number of items. The carriage-return character (ODH) is 
the cue to stop the cassette when data is being read. 
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14.3 Programming Cassette Input and Output 

The most useful format for an assembly-language programmer is 
that for machine-language object tapes. 	Using this format, 
both programs and data can be saved, as long as they are read 
into or out of a contiguous memory block. The program shown 
below reads an object tape into memory, even blinking the 
asterisk in the upper right corner like the SYSTEM command. 
Rather than having you specify the name, however, the name is 
read off the tape and printed on the video display. When the 
program has been read completely, the starting, ending, and 
entry addresses are also printed. The program then waits for 
you to type a key. 	If you type ENTER, execution of the 
program read into memory begins. 	Otherwise, 'the system is 
rebooted. 

;PROGRAM TO READ MACHINE-LANGUAGE OBJECT TAPES 
REBOOT EQU 	0 	;ROM ADDRESSES 
VIDEO EQU 33H 
INPUT EQU 49H 
CASOFF EQU 	1F8H 
DEFDRV EQU 	212H 
RSYNC EQU 296H 
RBYTE EQU 235H 
RHL 	EQU 	314H 

ORG 	7E00H 	;NEAR TOP OF 16K 
START CALL 	CLS 	;CLEAR SCREEN AT START 
READY 	LD 	HL,FREADY 	;PRINT "READY CASSETTE" 

CALL 	PRINT 
CALL 	INPUT 	;WAIT FOR KEYIN 
LD 	HL,FNAME 	;MESSAGE 
CALL 	PRINT 
XOR 	A 	;CASSETTE 1 
CALL 	DEFDRV 
CALL 	RSYNC 
CALL 	RBYTE 	;FIRST BYTE 
CP 	55H 	;FILENAME HEADER 
JR 	NZ,CERR 	;WRONG TAPE IF NOT 
LD 	B,6 	;6-LETTER NAME 
CALL 	RBYTE 
CALL 	DISP 	;PRINT ON SCREEN 
DJNZ 	$-6 
CALL 	RBYTE 	;FIRST BLOCK 
CALL 	RDH 
LD 	(ADR1),HL 	;SAVE 1ST LOC 
JR 	CLP2 

CLP 	CALL 	RBYTE 	;1ST BYTE OF BLOCK 
CP 	78H 	;ENTRY? 
JR 	Z,CEND 
CALL 	RHD 
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CLP2 	ADD 
LD 

CRD 	CALL 
LD 
ADD 
LD 
INC 
DJNZ 
CALL 
CP 
JR 
PUSH 
LD 
LD 
CP 
JR 
LD 
LD 
POP 
JR 

CHKSM 	LD 
JR 

CERR 	LD 
CALL 
CALL 
JR 

CEND 	LD 
CALL 
LD 
CALL 
LD 
CALL 
LD 
CALL 
LD 
CALL 
CALL 
CP 
JP 
JP 

RHD 	CP 
JR 
CALL 
LD 
JP 

PRINT 	LD 
AND 
CALL 
BIT 
RET 
INC 

A,L 
C,A 
RBYTE 
(HL) ,A 
A,C 
C,A 
HL 
CRD 
RBYTE 
C 
NZ,CHKSM 
HL 
HL,3C3FH 
A,'*' 
(HL) 
NZ,$+4 
A,' 	' 
(HL) ,A 
HL 
CLP 
HL,FCHKSM 
$+5 
HL,FCERR 
PRINT 
CASOFF 
READY 
(ADR2),HL 
RHL 
(ADR3) ,HL 
CASOFF 
HL,(ADR1) 
PHL 
HL,(ADR2) 
PHL 
HL,(ADR3) 
PHL 
INPUT 
13 
NZ,REBOOT 
(HL) 
3CH 
NZ,CERR 
RBYTE 
B,A 
RHL 
A, (HL) 
7FH 
DISP 
7, (HL) 
NZ 
HL  

;COMPUTE CHECKSUM 
;SAVE IN C 
;READ DATA 
;SAVE IN MEMORY 
;COMPUTE CHECKSUM 
;SAVE IN C 
;NEXT LOC 
;CONTINUE THRU BLOCK 
;CHECKSUM FROM TAPE 
;OK? 
;IF NOT, BAD READ 

;RIGHT CORNER OF VIDEO 
;BLINK 
;IF '1" ALREADY THERE, 
;CHANGE TO 
;BLANK 
;STORE 

;GET NEXT BLOCK 
;CHECKSUM ERROR 

;READ ERROR 

;STOP TAPE 
;TRY AGAIN 
;ENDING ADDRESS 
;GET ENTRY ADDRESS 
;SAVE 
;STOP 
;PRINT ADDRESSES 
;START 
;END 

;ENTRY 

;WAIT FOR KEYIN 
;ENTER KEY 
;REBOOT IF NOT 
;ELSE EXECUTE PROGRAM 
;CODE FOR DATA BLOCK 
;IF NOT DATA, NOGOOD 
;LENGTH 
;SAVE IN B 
;GET ADDRESS, RETURN 
;PRINT MESSAGE 
;MASK PARITY 

;DONE IF NZ 

;NEXT LOC 
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JR 	PRINT 	;CONTINUE 
PHL 	LD 	A,' 	;PRINT 

CALL 	DISP 	;TWO 
CALL 	DISP 	;SPACES 
LD 	A,H 	;PRINT H 
CALL 	HEX 	;AND L 
LD 	A,L 	;IN HEX 

HEX 	PUSH 	AF 
RRCA 
RRCA 
RRCA 
RRCA 
CALL 	HEX2 
POP 	AF 

HEX2 	AND 	15 
ADD 	A,30H 
CP 	3AH 
JR 	C,DISP 
ADD 	A,7 

DISP 	CALL 	VIDEO 
RET 

;FORMATS 
FREADY DEFM 	'READY CASSETTE' 

DEFB 	8DH 
FCERR 	DEFM 	'CASSETTE READ ERROR' 

DEFB 	8DH 
FCHKSM DEFM 	'CHECKSUM ERROR' 

DEFB 	8DH 
FNAME 	DEFM 	'NAME 	START END 	ENTRY' 

DEFB 	8DH 
;DATA AREAS 
ADR1 	DEFS 	2 	;START 
ADR2 	DEFS 	2 	;END 
ADR3 	DEFS 	2 	;ENTRY 

END 	START 

This program contains four utility subroutines and one 
specialized subroutine. 	The utility subroutines are DISP, 
which displays a byte on the video screen (note that it is not 
necessary to save DE and IY, because they are not used); HEX, 
which prints the byte in A in hexadecimal form; 	PHL, which 
prints two spaces followed by the bytes in H and L in 
hexadecimal form; and PRINT, which displays an ASCII message 
until a byte with bit 7 set is found. At the end of the 
program, there are four messages printed by this subroutine 
(FREADY, FCERR, FCHKSM, and FNAME). Each message terminates 
in the byte 8DH, which represents the carriage return with bit 
7 set. 
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The program begins by printing "na&oY CASSETTE" and waiting 
for you to type a key. It then pc1ota a message indicating 
the information it will give you about the tape it reads (name 
and starting, ending, and entry addresses). After getting the 
tope going, it nneoko to see whether the first byte is 558, 
which is the code for file name. If not, the wrong type  of 
tape is being read. The address of the first block must be 
saved for the message later. For this reason, the portion of 
the program that obacko to see if a data block is occurring as 
expected, and reads the length and address of the block, is 
made into a subroutine (Roo). The block is read and ob*nkaom 
computed. 	at the conclusion of the block read, the nbeoKoum 
computed is compared to that on the tape. 	If they are not 
identical, an error has occurred. Any tape error results in 
the program being restarted from the ^oEanY CASSETTE" 
message 

The asterisk blinks only at the end of a block. 	If an 
asterisk is already present in the upper right corner of the 
video display,  it is changed to a blank. 	Otherwise an 
asterisk is stored there. 	After the entry block has been 
read, the tape is stopped and the addresses displayed. 	The 
program is then executed if you typo 8mTua. 

Suppose that you have a tape written in some non-standard 
format that you want to kova how to read. How can you 
discover what is on the tape? The following program can be 
used for this purpose. All it does is read the bytes off the 
tape directly into memory, starting at 70268 (aDr£mn). 	It 
never stops, so you must press the nBSor button when you think 
it is done. After hitting RESET, you can use a program such 
as Monitor 3 or 4 or aUrEuxae to examine the ovuteuto of 
memory and see what is on the tape. This method was in fact 
used to work out the tape formats described above. 

;PROGRAM TO READ A CASSETTE TAPE DIRECTLY INTO MEMORY 
DEFDeV uOU 	3138 
RGYmC EDU 296a 
uoYcE o0U 2358 
B LINK 	oUO 	3C3r1:11 

OnG 	7000a 
START DI 

XOu 	a 
CALL 	nDroaV 
cacL 	nsYmC 
Lo 	oE,BLImu 
Ln 	a,'^' 
xXX 
Ln 	a,' ' 
uKx 

;Urron nISHIT CORNER 

/Snmo AS CMD°r" 
/aTagz zucx 

/sEt Oe BLINKING 
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LD 	HL,BUFFER 	;WHERE TO PUT DATA 
READ 	CALL 	RBYTE 	;GET BYTE 

LD 	(HL),A 	;STORE 
INC 	HL 	 ;NEXT LOC 
LD 	A,B 	 ;GET BLINK CHAR 
LD 	(DE),A 	;BLINK 
CALL 	RBYTE 	;NEXT BYTE 
LD 	(HL),A 	;STORE 
INC 	HL 	 ;NEXT LOC 
EXX 	 ;GET OTHER BLINK CHAR 
LD 	A,B 
EXX 
LD 	(DE),A 	;BLINK 
JR 	READ 	 ;CONTINUE 

BUFFER DEFS 	1 	 ;TO END OF MEMORY 
END 	START 

You may wonder why it was not possible simply to read the 
tape directly to the video display itself, rather than having 
to save it in memory. 	The reason is that the computation 
involved in converting the data to hexadecimal form is too 
lengthy for the computer to keep up with the 500-baud tape 
speed. The computation involved in blinking the asterisk in 
this example, which consists of loading an asterisk into B and 
a blank into B', and then alternately storing B or B' in the 
upper right corner, is an example of the kind of computation 
that can be carried out when reading data from cassettes. 

Recently, some companies have been selling programs that 
come with a special tape-loading program that uses a 
non-standard format, to prevent you from listing or saving the 
program. This prevents people from making pirated copies of 
the software. The program above, coupled with a disassembler, 
can be used to discover the method actually used to load the 
programs, and ultimately to read them yourself. While reading 
such tapes is certainly possible, understanding how these 
loaders work is a much more complicated task, beyond the scope 
of this discussion. 

This information is a testimony that there is no mystery of 
the TRS-80 is beyond the power of a person who understands 
assembly-language programming. Nevertheless, we do not 
encourage people to discover how to make pirate copies of 
software, which is a serious problem in the microcomputer 
industry today. 
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USR SUBROUTINES Li 

BASIC PROGRAMS 

15.1 USR Subroutines 

One of the most practical applications of assembly-language 
programming is to carry out some of the operations of a Basic 
program. 	The USR statement is the means by which assembly- 
language subroutines can be called from Basic. 	The USR 
subroutine must be located at the top of your RAM in order for 
it to be protected, and you must set the memory size to the 
first location used by the subroutine. Calling a USR 
subroutine requires a different procedure in Level II and Disk 
Basic. 

The procedure for calling a USR subroutine in Level II 
Basic is so confusing that there was an error in the first 
edition of the REFERENCE MANUAL in the illustration. 	It is 
actually very simple. 	All you have to do is to put the 
address of the location you want to call into locations 408EH 
and 408FH as a two-byte integer. The complicated aspect of 
this is that the numbers must be POKEd into these locations, 
one byte at a time, in decimal form. The decimal equivalent 
of 408EH is 16526 and that of 408FH is 16527. To know what to 
POKE into these locations, you need to convert each byte of 
the entry address of the subroutine into decimal form, and 
then put the least-significant byte into 16526 and the most-
significant byte into 16527. Suppose that the entry address 
is 7D00H. The first byte is 7D and the second 00. 7DH is 125 
and 00 is 0. 	You must therefore POKE 0 into 16526 and 125 
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into 16527. Then the execution of a "X=USR(N)" statement will 
cause a CALL to location 7D00H to be executed. 

This procedure is much simpler in Disk Basic, because there 
are ten USR functions and the entry location is set by the 
DEFUSR statement. 	In addition, hexadecimal constants are 
allowed. Instead of all that conversion from hexadecimal to 
decimal and POKEing into 16526 and 16527, all you have to do 
is to say DEFUSR0=&H7D00. If you are using Disk Basic, you 
probably have 32 or 48K RAM available, and you will therefore 
probably locate the subroutines up in high memory, such as 
HFD00, for 48K. 

One integer (2-byte) argument, specified in the parentheses 
following the USR or USRn, may be passed to the USR subroutine 
in the calling statement. Additional arguments may be POKEd 
into RAM locations inside the USR subroutine, or anywhere 
within the protected memory area. 

If you want the USR subroutine to operate upon variables 
used by the Basic program, you need to tell it where those 
variables are located. 	This is the purpose of the VARPTR 
statement. VARPTR(X) returns the address of the first byte of 
the variable X. 	Integer variables require 2 bytes, single- 
precision variables 4, double-precision 8, and strings 3 plus 
the length of the string (0 to 255 bytes). PEEK(VARPTR(X)) 
gets the actual value itself, but an assembly-language 
subroutine will usually want the address rather than the 
data. 

The only problem with passing a VARPTR argument to a USR 
subroutine comes when you need to pass more than one of them, 
so that you must use the "POKE" method mentioned above. In 
this situation, you have to break down the VARPTR address into 
two bytes and POKE them into the respective locations. Here, 
you can use an extra integer variable to simplify the process. 
In the following example, suppose that you want to pass the 
address of the variable X to a USR subroutine by POKEing it 
into locations 7FFEH and 7FFFH (32766 and 32767). You can use 
an extra variable Y for this purpose: 

110 DEFINT Y 
120 Y=VARPTR(X) 
130 POKE 32766,PEEK(VARPTR(Y)) 
140 POKE 32767,PEEK(VARPTR(Y)+l) 

PEEK(VARPTR(Y)) contains the first (least-significant) byte of 
the address of X, and PEEK(VARPTR(Y)+1) the second (most-
significant) byte. y must be defined as an integer, but X may 
be any type of variable. Y can now be re-used in the program, 
since it is only needed temporarily. 
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If the variable whose address you want to pass to the 
assembly-language program is subscripted, you need only pass 
the address of the first location used (usually subscript 0 or 
1). 	You can then rely on the fact that if A(0) is stored in 
one series of bytes, A(1) will be in the next, A(2) will 
follow A(1), etc. The amount that you have to increment the 
address depends on the type of variable. 	For integers, 
single-, and double-precision numbers, this amount is 2, 4, 
and 8 bytes, respectively. The data itself is stored in these 
contiguous locations. 	For strings, the amount is 3 bytes. 
The information stored there is the length of the string in 
the first byte and its address in the following two bytes. 
The data itself is stored elsewhere, in the string space area 
(reserved by the CLEAR statement). 

A single argument may also be passed back to the Basic 
program. 	This is stored in the variable on the left side of 
the equals sign that has USR on the right. 	X=USR(0) passes 
the argument 0 to the subroutine, and when it returns, the 
value passed from the subroutine back to the Basic program is 
stored in X. 	The HL register pair is used to hold the 
argument in both cases. 

If you want to pick up the argument when entering the 
assembly-language subroutine, you must first CALL 0A7FH. 	To 
pass the argument back to the Basic program, you must 
terminate the program with a jump (JP) to location 0A9AH 
(2714). 	If you don't want to return an argument, you simply 
RET (return) at the end of your subroutine. 

15.2 Sorting a Series of Integers 

Sorting an array of numbers is one operation that is ideally 
suited to an assembly-language subroutine. 	The following 
Basic program generates a series of 100 random integers 
(stored in A(0) to A(99)), and then sorts them by means of a 
"bubble" sort. (The bubble sort works by taking each value 
and comparing it to all remaining values to see if it is 
lower. If not, the values are exchanged and the process 
continues. 	In this way:  the smallest values "float" to the 
top and larger ones to the bottom.) 	This program requires 
about a minute and a half of execution time in Basic (try 
it!). The numbers are printed first in unsorted order, and 
later in sorted order. 

10 REM SORT 100 RANDOM INTEGERS 
20 DEFINT A-Z: N=99: DIMA(N) 
30 FOR I=0 TO N: A(I)=RND(1000): NEXT I 
40 FOR 1=0 TO N: PRINT I;A(I),: NEXT I 
50 FOR I=0 TO N-1 
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60 FOR J=I+1 TO N 
70 IF A(I)<=A(J) THEN 90 
80 X=A(I): A(I)=A(J): A(J)=X 
90 NEXT J,I 
100 FOR 1=0 TO N: PRINT I;A(I),: NEXT 

For this sort to be programmed in assembly language, we 
need the address of the A array and the value of N. It is an 
important aspect of the above program that N is a variable. N 
is set to 99 rather than 100 to make use of the A(0) variable. 
N can be changed to sort any number of random integers. 	We 
will poke the address of A into locations 7FFEH and 7FFFH 
(32766 and 32767), and pass N to the subroutine as the 
argument. 	The following Basic program sets up the sort and 
calls the subroutine, located at 7F00H. We must therefore set 
the memory size to 32515. 	This is a Level II subroutine. 
Disk Basic statements are indicated in remarks: 

10 REM MACHINE LANGUAGE SORT 
20 DEFINT A-Z: N=99: DIMA(N) 
30 FOR 1=0 TO N: A(1)=RND(1000): NEXT I 
40 FOR 1=0 TO N: PRINT I;A(I),: NEXT I 
50 X=VARPTR(A(0)): POKE 32766,PEEK(VARPTR(X)) 
60 POKE 32767,PEEK(VARPTS(X)+1) 
70 POKE 16526,0: POKE 16527,127 
75 REM IN DISK BASIC, REPLACE 70 WITH DEFUSR0=&H7F00 
80 X=USR(N): REM CALL SUBROUTINE 
85 REM IN DISK BASIC, REPLACE 80 WITH X=USRO(N) 
90 FOR I=0 TO N: PRINT I;A(I),: NEXT I 

The subroutine that this program calls is shown below. 
This routine does exactly what the Basic program does and 
executes in less than one second. It will sort 1000 integers 
in about one minute. 

ORG 	7FOOH 
ENTRY 	CALL 	0A7FH 	;put arg into HL 

PUSH 	HL 	;HL=N 
POP 	BC 	;transfer to BC 
LD 	IX,(ADRA) 	;IX=address of A(I) 

ILOOP 	PUSH 	BC 	;save outer loop index 
PUSH 	IX 
POP 	IY 	;IY=address of A(J) 

JLOOP INC IY 	;A(I+1) 
INC 	IY 
LD 	H,(IX+1) 	;HL=A(I) 
LD 	L,(IX) 
LD 	D,(IY+1) 	;DE=A(J) 
LD 	E,(IY) 
OR 	A 	;clear carry 
SBC 	HL,DE 	;A(I)-A(J) 
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JR 	Z,NEXTJ 	;= 
JR 	C,NEXTJ 	;< 
ADC 	HL,DE 	;restore HL 
LD 	(IY+1),H 	;swap A(I) 
LD 	(IY),L 	;with A(J) 
LD 	(IX+1),D 
LD 	(IX),E 

NEXTJ 	DEC 	BC 	;loop till BC=0 
LD 	A,B 
OR 
JR 	NZ,JLOOP 
POP 	BC 	;outer loop 
INC 	IX 	;next I 
INC 	IX 
DEC 	BC 
LD 	A,B 
OR 
JR 	NZ,ILOOP 
RET 	 ;done! 
ORG 	7FFEH 

ADRA DEFS 2 
END 

This subroutine makes use of the fact that Level II Basic 
integers are standard 16-bit numbers that can be added or 
subtracted using the 16-bit arithmetic operations. 	Sorting 
other types of variables requires more complicated algorithms. 
The BC register pair is used to contain the index values for 
both the outer and inner loops. The value of the outer loop 
is saved in the stack while the inner loop is executed. 

15.3 Alphabetizing a Series of Strings 

Alphabetizing a series of strings is basically the same kind 
of problem as sorting a series of integers, except that the 
strings may be of different lengths. 	The following Basic 
program builds 100 random strings of 1 to 5 characters and 
then alphabetizes them. This process requires about two and a 
half minutes to execute in Basic: 

10 REM SORT 100 RANDOM STRINGS 
20 CLEAR 1000: DEFSTR A: DEFINT B-Z 
30 N=99: DIMA(N) 
40 FOR I=0 TO N: A(I)="" : REM INITIALIZE STRINGS 
50 J=RND(5): FOR K=1 TO J: BUILD STRINGS OF 1-5 CHARS 
60 A(I)=A(I)+CHRS(RND(26)+64)): NEXT K,1 
70 FOR I=0 TO N: PRINT I;A(I),: NEXT I 
80 FOR I=0 TO N-1: FOR J=I+1 TO N 
90 IF A(I) <= A(J) THEN 110 
100 X$=A(1): A(I)=A(J): A(J)=X$ 
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110 NEXT J,I 
120 FOR 1=0 TO N: PRINT I; A(I),: NEXT I 

To carry out the sorting function in assembly language, we 
have to remember that, for string values, VARPTR(A$) returns 
an address pointing to the LENGTH of the string, and the 
ADDRESS of the string is in the next two bytes. The program 
above can be revised as follows, to set up the call to a USR 
subroutine to do the alphabetizing: 

10 REM ALPHABETIZE STRINGS IN ASSEMBLY LANGUAGE 
20 CLEAR 1000: DEFSTR A: DEFINT B-Z 
30 N=99: DIM A(N) 
40 FOR I=0 TO N: A(I)="": REM INITIALIZE STRINGS 
50 J=RND(5): FOR K=1TO J: BUILD STRINGS OF 1-5 CHARS 
60 A(1)=A(I)+CHR$(RND(26)+64): NEXT K,J 
70 FOR I=0 TO N: PRINT I; A(I),: NEXT I 
80 X=VARPTR(A(0)): POKE 32766,PEEK(VARPTR(X)) 
90 POKE 32767, PEEK(VARPTR(X)+1) 
100 POKE 16526,0: POKE 16527,127 
105 REM IN DISK BASIC REPLACE BY DEFUSR0=&H7F00 
110 X=USR(N): REM IN DISK BASIC REPLACE BY X=USRO(N) 
120 FOR I=0 TO N: PRINT I;A(I),: NEXT I 

The assembly-language subroutine is as follows: 

ORG 	7F00H 
ENTRY 	CALL 	0A7FH 	;put n into HL 

PUSH 	HL 	;move N to BC 
POP 	BC 
LD 	IX,(ADRA) 	;IX=VARPTR(A(I)) 

ILOOP 	PUSH 	BC 	;save I (outer loop) 
PUSH 	IX 
POP 	IY 	;IY=VARPTR(A(J)) 

JLOOP 	PUSH 	BC 	;save J (inner loop) 
INC 	IY 
INC 	IY 
INC 	IY 
LD 	B,(IX) 	;B=length of A(I) 
LD 	C,(IY) 	;C=length of A(J) 
LD 	L,(IX+l) 	;HL=address 
LD 	H,(IX+2) 	;of A(I) 
LD 	E,(IY+1) 	;DE=address 
LD 	D,(IY+2) 	;of A(J) 

COMP 	LD 	A,(DE) 	;A=char in A(J) 
CP 	(HL) 	;compare to A(I) 
JR 	C,SWAP 	;swap if < 
JR 	NZ,NEXTJ 	;if NZ, continue 
INC 	DE 	;try next char 
DEC 	C 	;length of A(J) 
JR 	Z,SWAP 	;if Z, no more chars 
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INC 	HL 	;A(I) 
DJNZ 	COMP 
JR 	NEXTJ 	;if Z, order OK 

SWAP 	LD 	B,(IX) 	;swap strings 
LD 	L,(IX+1) 	;by changing 
LD 	H,(IX+2) 	;pointers 
LD 	C,(IY) 
LD 	E,(IY+1) 
LD 	D,(IY+2) 
LD 	(IX),C 
LD 	(IX+1),E 
LD 	(IX+2),D 
LD 	(IY),B 
LD 	(IY+1),L 
LD 	(IY+2),H 

NEXTJ 	POP 	BC 	;loop till 
DEC 	BC 	;BC=0 
LD 	A,B 
OR 
JR 	NZ,JLOOP 

NEXTI 	POP 	BC 	;outer loop 
INC 	IX 	;next I 
INC 	IX 
INC 	IX 
DEC 	BC 
LD 	A,B 
OR 
JR 	NZ,ILOOP 
RET 	 ;done! 

ADRA 	EQU 	7FFEH 
END 

This subroutine alphabetizes 100 strings in about one 
second, and 500 strings in about 25 seconds. Running the 
program with the assembly-language subroutine shows that it 
takes Basic much longer to build the random strings than it 
does to alphabetize them. This is an excellent example of the 
efficiency that can be achieved by using assembly-language 
subroutines to do the tasks that they are ideally suited for. 
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DISK INPUTAND OUTPUT 

This chapter is intended to provide basic information about 
the operation of the TRS-80's floppy disks. 	It covers the 
fundamentals and input-output operations, while chapter 17 
presents details about the Disk Operating System and disk 
files. Much information about the disks is contained in Radio 
Shack's TRSDOS & DISK BASIC REFERENCE MANUAL. 	In addition, 
there are other books devoted exclusively to the disk, such as 
Harvard C. Pennington's TRS-80 DISK & OTHER MYSTERIES and 
William Barden's MICRO APPLICATIONS TRS-80 DISK INTERFACING 
GUIDE. 

16.1 Disk Basics 

The title of this section is "Disk Basics", not "Disk Basic". 
Basic is the main programming language of the TRS-80, and when 
you add a disk to the computer you have a large number of 
additional features available. 	Here we are covering 
preliminary information for the operation of the disk, and• our 
discussion has nothing to do with the Basic language. In a 
sense, the TRS-80 is not a complete computer without a disk. 
Software to read the disk is contained in the ROM, and it is 
only when the configuration is tested and found not to contain 
a disk that Level II Basic is entered. 

Everyone who owns a disk is familiar with the terms 
"tracks", "granules", and "sectors", but if you aren't 
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familiar, then this information is new to you. The disk DRIVE 
is the piece of hardware into which a DISKETTE is inserted. 
The fact that the diskette can be removed is a vital aspect of 
its operation. 	The diskette is a round magnetic device 
similar to a phonograph record, except that information is 
recorded on it magnetically, and it is flexible or pliable and 
bends easily. It spins at approximately 300 RPM inside the 
paper wrapper in which it is kept. The magnetic impulses are 
read or written by a HEAD, which makes contact with the 
diskette through the oval-rectangular hole at the interior of 
the diskette. The diskette should always be handled carefully 
and replaced in its paper sleeve when not being used. 

The surface of the diskette is divided into 35 concentric 
circles called TRACKS. (The fact that the inner tracks have a 
smaller surface area is of no concern to the operation of the 
system.) Each track is in turn divided into ten SECTORS. 256 
bytes of data can be stored on each sector, and thus 2560 
bytes on each track. The entire capacity of the diskette is 
35 x 2560 = 89,600 bytes. 

Other floppy disk systems may employ a different 
organization of the diskette, although the method used by 
Radio Shack is quite common. There are presently two kinds of 
floppy disk drives: eight-inch or standard disks and five-
and-one-fourth inch or mini disks. The TRS-80 uses the mini 
disks, although the TRS-80 model II uses standard disks. 	The 
capacity of an 8-inch disk (over 500,000 bytes) is 
significantly greater than that of a mini disk. 

Other disk systems may use 40 or 77 tracks on the diskette, 
and sometimes each track is divided into 16 sectors rather 
than ten. 	The TRS-80 uses SOFT-SECTORED diskettes, which 
means that there is only one little hole that must be sensed 
to find the beginning of the first sector on the diskette. 
The other sectors are found by sensing magnetic impulses that 
are written on the diskette when it is formatted. Formatting 
is something that you must do (by running a special program) 
to a new diskette before you use it the first time. 
Hard-sectored diskettes have either ten or 16 different holes 
that must be sensed by the disk controller. 

16.2 The Disk Operating System 

When you power up or "boot' a TRS-80 containing a disk, the 
computer expects that the diskette in the first drive, 
referred to as the "system" diskette in drive "zero", contains 
special information in the first sector of the first track. 
This track is part of a file called "BOOT/SYS", which contains 
a program that in turn reads much more information from the 
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disk into memory. 	Only the first sector of this file is 
actually used for the bootstrap loader. Sectors 2-3 of the 
file contain an encoded copyright notice, which is displayed 
if you type "BOOT/SYS.WHO" and hold down the "2" and "6" keys 
simultaneously. Sectors 4-5 contain tables. 

The program read into memory at power-on or reset is called 
the DISK OPERATING SYSTEM (DOS), and it is used for all disk 
input-output and some other functions. Radio Shack provides a 
DOS called TRSDOS, of which there have so far been four 
versions numbered 2.0 through 2.3. 	Several others are 
available from other companies. The most important of these 
are NEWDOS and NEWDOS80 available from Apparat, Inc.; and VTOS 
3.0, available from Virtual Technology, Inc. 

The DOS is organized into a series of "system" files 
referred to as SYSO to SYS6, and some DOSs have file names up 
to SYSl3. The reason for this organization is that there is 
not enough room in memory to have all functions available at 
all times, so the DOS automatically reads in what it needs 
when it needs it. 	The portion of memory used by the DOS 
extends approximately from locations 4200H through 5200H, and 
it is analogous to the ROM in that this information must not 
be disturbed by the programmer. Inclusion of the DOS on the 
system diskette takes up a significant portion of its 89K 
bytes, leaving only about 55K (46K when including BASIC and 
utilities) for user programs and data. 

The main purpose of the DOS is that it allows you to refer 
to data on the disk as FILES rather than by tracks and 
sectors. A file contains as many sectors as it needs to 
contain, as long as they are all on the same diskette. It may 
be split up among various tracks all over the diskette, but 
you never have to worry about this even though you can refer 
to the individual sectors of the file. 	The DOS allocates 
space to the files in terms of GRANULES, consisting of five 
sectors or half a track each. A minimum of five sectors is 
allocated, even if you need only one. To keep the allocation 
of space straight, the DOS reserves track 17 (purposely in the 
middle of the diskette so that the head never has to move more 
than half its width) as a DIRECTORY track. 	This track 
contains the name of each file and all the information 
relating to its space allocation, and also tables called the 
HASH INDEX TABLE (HIT) and GRANULE ALLOCATION TABLE (GAT). 
These will be explained in Chapter 17. 

While the organization of the disk into files does waste 
some of the space, it makes accessing the data on the disk 
very easy for the programmer. 	The DOS handles all of the 
input-output operations as well as the bookeeping. 
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To understand how to use the disk, you need to know the 
basic operations of the disk, which have nothing to do with 
the file structure, and you also need to know how to use the 
DOS, which is one of the most important aspects of the 
computer. 	Because Disk Basic spends much of its time 
converting data into and out of strings, it is very slow and 
inefficient in its use of disk input-output operations. The 
true power of the disk can only be realized through 
assembly-language programming. 

16.3 The Disk Controller 

The heart of the TRS-80's disk system is the Western Digital 
FD17718-01 floppy disk controller chip, contained in the 
expansion interface. 	The disk drive used by Radio Shack is 
the Shugart SA400. Many drives made by other companies have 
also been used successfully, and are compatible with the 
Shugart SA400. The disk controller chip is interfaced to the 
TRS--80 by being directly connected to memory locations 37E0H 
and 37ECH to 37EFH. This is to say that all disk input-output 
operations are effected by storing or reading various bytes in 
these locations. 

To read or write from the disk, you must first SELECT the 
appropriate disk drive. This turns on the drive motor and 
leaves it running for about three seconds. All subsequent 
disk operations are directed to the drive selected. To select 
a drive, a value specifying the drive must be stored in 
location 37E0H (14304). The values 1, 2, 4, and 8 specify 
drives 0, 1, 2, and 3, respectively. 	The sequence of 
operations: 

LD 	A,1 
LD 	(37E0H),A 

selects drive zero. 	Storing a value representing a 
combination of these values, such as 3, which combines drives 
0 and 1, selects two or more drives simultaneously, although 
no standard software makes use of this feature (and it is 
probably unreliable). 

The basic commands that may be issued to the disk 
controller chip allow you to position the head and read or 
write data. The basic commands are as follows: 

1. Restore: move the head to track zero. 
2. Seek: find the currently specified track. 
3. Step: step the head in the last direction. 
4. Step In: step the head one track in. 
5. Step Out: step the head one track out. 



DISK INPUT AND OUTPUT 	PAGE 139 

6. Read: read one byte of data. 
7. Write: write one byte of data. 
8. Read Address: read ID field. 
9. Read Track: read entire track. 
10. Write Track: write entire track. 
11. Force Interrupt: terminate operation. 

The disk controller contains various registers and status 

	

indicators. 	Location 37ECH (14316) is the COMMAND register. 
Most disk operations are accomplished by loading the proper 
value into this location, once a drive has been selected. 
Another is the STATUS register, which is used to test whether 
a previous operation has been completed and whether the disk 
is ready for another command or for data. The status register 
is read by reading location 37ECH, the same as the command 
register. 37EFH (14319) is the DATA register. Data is read 
from the diskette in serial order, and always passed into or 
out of this location in quantities of one byte. 	The data 
register is also used to hold various other values when 
commands are issued. 	Other registers include the TRACK 
register, which is at location 37EDH (14317), and the SECTOR 
register, at location 37EEH (14318). 	They hold information 
about the track and sector currently being used. 

Most disk commands are executed by simply storing a 
particular value into location 37ECH. The following table 
shows the values that must be loaded in order to accomplish 
the functions indicated: 

Value 	Function 	Value 	Function  

	

03H 	restore 	A8H 	write data byte 

	

13H 	seek 	A9H 	write byte on 

	

33H 	step last 	directory track 
direction 	C2H 	read address 

	

53H 	step in 	E4H 	read track 

	

73H 	step out. 	F4H 	write track 

	

88H 	read byte 	DOH 	force interrupt 

To be sure, other values may be used to perform these same 
functions with minor differences in operation, but these are 
the values normally used for these operations on the TRS-80. 

When data is read or written from a disk, the cpu must 
continually be ready to respond to the disk controller. All 
other operations must be locked out. 	Interrupts must be 
disabled, and the cpu must be in a loop, testing the status of 
the controller. Since disk operations are usually very fast, 
this is a minimum amount of overhead, but it does mean that 
the TRS-80 cannot be used in certain real-time applications 
where it must be ready to respond to external conditions. 
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One other point about the disk system is that the presence 
of the write protect tab does nothing but set a bit in the 
status register. The protection of data on write-protected 
diskettes is entirely a function of the software. 

16.4 Disk Operations 

After selecting the drive, the first operation we might want 
to perform might be a restore, which moves the head to track 
zero. This is accomplished by storing the value 3 in location 
37ECH (14316). We must then test the value in 37EC to 
determine whether the disk has completed its operation. When 
bit zero of this location goes to zero, the operation is 
finished and the head is positioned over track zero. As long 
as it remains a one, we must wait before performing any 
further disk operation. 

One way of locating any track on the disk is to move the 
head to track zero, and then step in until the desired track 
is found. The step-in operation is done by storing the value 
53H (83) 	in location 37ECH. 	Conversely, stepping out is 
performed by storing the value 73H (115) in 37EC, and stepping 
from the last direction by storing 33H (51) in the same 
location. After performing a step operation, we again must 
test the status of the disk and wait until the operation is 
complete. 	To verify what track the head is currently 
positioned over, we can read the track register by simply 
loading the contents of location 37EDH (14317). 

A better way of finding a particular track is to use the 
seek command, which automatically positions the head to a 
specified track. To use this command, the track number (0 to 
34) must first be loaded into location 37EFH (14319), after 
the drive has been selected. The sector can also be specified 
by storing the sector number in 37EEH (14318). Seek is then 
executed by storing 1BH (27) into location 37ECH. 

All of the above head-positioning operations may be 
accomplished in Basic, by simply POKEing and PEEKing into the 
prop.r lnrai-innq 	Thra fnllnwing Racir,  prngram 

zero, restores it to track zero, and then asks you to specify 
a track number. The head is then positioned over this track 
by means of the seek command, and the track number is read 
from the track register and printed, to verify that the proper 
track has been located. Then the program returns and asks you 
for a new track. The subroutine at statement 150 tests the 
status of the last operation and waits until it has been 
completed. 
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10 POKE 14304,1 
20 POKE 14316,3 
30 GOSUB 150 
40 INPUT" TRACK #";T 
50 POKE 14304,1 
60 POKE 14319,T 
70 GOSUB 150 
80 POKE 14316,19 
90 GOSUB 150 
100 A=PEEK(14317) 
110 PRINT A 
120 A=PEEK(14316) 
130 PRINT A 
140 GOTO 40 
150 A=PEEK(14316) 
160 IF (A AND 1) <> 0 THEN 
170 RETURN  

select drive zero 
restore to track zero 
wait until done 
get track # 
select again 
output track 
wait 
seek 
wait 
read track register 
print it 
get status 
print status 
try another track 
test status 

150 	loop if busy 
done 

One impression you may have when running this program is 
that the disk finds the proper track almost immediately, and 
if you do not input a new track number within three seconds, 
the drive motor is turned off. It is true that the head can 
be positioned over any track in no more than a couple of 
seconds, but this speed is nothing when compared to the rate 
at which data is read or written from the disk. The latter is 
so fast that it cannot be done in Basic at all. 

Reading and writing of data on the disk is normally done 
with only the read and write byte commands, on a single sector 
at a time. The read track, write track, and read address 
commands are usually used only in formatting the disk, but it 
is possible to read and write entire tracks of data. The read 
and write byte commands can also read and write multiple 
sectors (from 2 to 9), although this feature is almost never 
used. 	Finally, note that the directory track must be written 
with a different code, although it can be read as any track. 
This property is used to protect the status of the directory 
track, without which the DOS cannot function, as well as to 
distinguish the directory from the other tracks. 

Reading or writing data can only be done after a sequence 
of operations such as shown above has been executed. Once the 
disk has been selected and head positioned, the status must be 
continuously tested. 	When it indicates that a byte is ready 
to be read from the data register, the byte must be taken and 
stored in the buffer immediately, and the process repeated 
until the entire sector or track has been read. 

To illustrate how this works, let us examine the portion of 
the ROM that reads the "BOOT" file from the system drive into 
memory. 	BOOT itself is a "bootstrap loader", which loads in 
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the rest of the DOS once it is entered. This program starts 
at location 06968 in the xom. What follows is a disassembled 
listing of the ROM to which comments have been appended: 

0696 	Ln 
0699 	INC 
069u 	Ce 
069C 	Jr 
069F 	or 
0 6A 	Lo 
06A4 	Lo 
06x7 	Ln 
00Ax 	Lo 
0 6A 	Lo 
06AF 	oaLc 
06132 	BIT 
06e4 	Ja 
06B6 	Xon 
06e7 	Lo 
06Bu 	Lo 
06ao 	co 
06eF 	Cn 
06c0 	azz 
06C2 	Jm 
06C4 	LD 
06C5 	Lo 
05C6 	INC 
06C7 	Jn 
06C9 	JP  

u,(37Ena) 
A 
2 
C,0075a 
u,l 
(37El8),a 
8L,37ECu 
nC,]7Ora 
(aL),3 
ac,0 
G0a 
0,(8L) 
ma,06a2e 
A 
(37s8a),A 
aC,420Na 
a,8CH 
(ac) ,a 
1, (HL) 
z,06C0o 
A, (DE) 
(oo),a 
C 
mo,06C0o 
4200o 

/teat 
;disk 
;atatue 
;go to Level II if no disk 
;drive zero 
;select it 
;command and status address 
;data address 
;restore command 
;delay 64K times 
/aOm delay routine 
;test status 
/wait if buoy 
;zero & 
;select sector 0 
;where to gut data 
;read command 
;read sector zero 
;test status 
/wait until ready 
/read byte 
;store in 42008 ff 
;increment pointer 
;continue until 256 bytes read 
/jump to DOS bootstrap loader 

This listing illustrates many aspects of how disk input and 
output programming works. The double registers BC, o8, and HL 
are always loaded with addresses that are used in fetching and 

are faster 
be changed 
C" is used 
codes and 

1.0.5 Disk Input/Output Subroutines 

We now have enough information to write generalized disk read 
and write subcoutioes. at this point it is necessary to 
mention that all rn800S routines have curious time-wasting 
instructions such as: 

puSa ar 
POP 	AF 

after various disk operations are performed. Presumably these 

storing data, because instructions like ^ro a,(8L)^ 
to execute than "Lo u,(37BFo)", and the address can 
by an INC instruction. 	In this example, "INC 
rather than "INC oo^ because it sets the condition 
only 256 bytes are being read. 
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are included either because of undocumented problems with the 
disk controller chip, or as a precaution. 

The following subroutine reads a single sector from the 
diskette in drive zero. The track and sector is specified in 
the DE register pair, D indicating the track and E the sector, 
and the buffer where incoming data is to be stored is in BC. 
The "AND 5CH" tests for various errors that may occur during 
the operation, and terminates it by a force interrupt 
instruction if an error occurs. 

;disable interrupts 
;drive zero 
;select 
;save BC 
;wait 64K times 
;ROM delay subroutine 
;restore BC 
;command register address 
;select again 

;specify track & sector 
;seek 
;waste time 

;waste mole time 

;get status 
;busy bit to carry 
;wait until done 
;read byte command 
;data register 
;start reading 
;busy bit to carry 
;if not busy 
;get status 
;test 
;wait if busy 
;get byte 
;store in buffer 
;increment pointer 
;continue 
;get status 
;teSt errors 
;done if no errors 
;force interrupt 
;print error message 
;done 

RDSECT DI 
LD 
	

A,1 
LD 
	

(37E0H) ,A 
PUSH 
	

BC 
LD 
	

BC,0 
CALL 
	

60H 
POP 
	

BC 
LD 
	

HL,37ECH 
LD 
	

A,1 
LD 
	

(37E0H) ,A 
LD 
	

(37EEH),DE 
LD 
	

(HL),13H 
PUSH 
	

BC 
POP 
	

BC 
PUSH 
	

BC 
POP 
	

BC 
WAIT 
	

LD 
	

A, (HL) 
RRCA 
JR 
	

C, WAIT 
DSKCM 
	

LD 
	

(HL) ,88H 
LD 
	

DE,37EFH 
JR 
	

RDLOOP 
BUSY 
	

RRCA 
JR 
	

NC,TSTERR 
RDLOOP LD 
	

A, (HL) 
BIT 
	

1,A 
JR 
	

Z,BUSY 
DSKIO LD A,(DE) 

LD 
	

(BC) ,A 
INC 
	

BC 
JR 
	

RDLOOP 
TSTERR LD 
	

A, (HL) 
AND 
	

5CH 
RET 
LD 
	

(HL) ,ODOH 
CALL 
	

ERRMSG 
RET 

Disk write subroutines are handled in much the same way, 
except that the data register must first be loaded with a byte 
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and the status then checked to determine if the controller is 
ready for the next byte. In fact, exactly the same subroutine 
as above could be used if the instruction at DSKCM is changed 
to: 

LD 	(HL),0A8H 	;write byte 

and the two instructions at DSKIO are changed to: 

LD 	A,(BC) 
	

;get byte 
LD 	(DE) ,A 	;store in data register 

It must be understood that this discussion is an 
oversimplification of the entire process, although it does 
serve to provide information that will be satisfactory for 
most purposes. 

16.6 TRSDOS Input-Output Subroutines 

There is little reason to include much information about the 
TRSDOS input-output subroutines, because this information is 
covered well and in detail in Radio Shack's "TRSDOS & DISK 
BASIC REFERENCE MANUAL. 	All known DOSS use the same 
subroutine calls. 

File handling is controlled through a data control block or 
DCB. Before the file is opened, the DCB contains the complete 
name of the file (including the extension, password, and drive 
number). 	When the DCB is open, other information is stored 
there. When open, the most important items in the DCB are the 
EOF (offset of last delimited in last record), LRL (logical 
record length), NRN (next record number to read or write) and 
ERN (ending record number). These are located at DCB bytes 8, 
9, 10-11, and 12-13, respectively. 

One of the basic ideas behind these subroutines is that, by 
setting the logical record length when opening the file and 
POSN to position it, records of any length (up to 256 bytes) 
may be read or written. The DOS takes care of any problems 
arising from the fact that these records may span two sectors 
in the file. Recent DOSs such as VTOS 3.0 and NEWDOS60 
incorporate this feature in Basic programming. With other 
DOSs, it can only be accessed through assembly-language 
programming. 	In most cases, an entire sector is read or 
written at one time. LRL is set to zero for this purpose. 

All TRSDOS subroutines require that the address of the DCB 
be loaded into the DE register pair before the system call is 
made, and the zero flag is set on exit to indicate whether the 
operation was successful. If there was an error (i.e., if NZ 
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was set), A contains the error code. Other calling parameters 
are noted for the individual subroutines, which are as 
follows: 

Name 	Address 
INIT 	4420H 

OPEN 	4424H 
POSN 	4442H 

READ 	4436H 
WRITE 	4439H 
VERF 	443CH 

CLOSE 	4428H 
KILL 	442CH  

Function 
Create file if 
none exists. 
Open existing file. 
Position file, 
if LRL <>0 
Read record. 
Write record 
Write record with 
verify. 
Close file. 
Kill file. 

Calling Parameters 
HL => buffer 
B = LRL 
Same as for INIT 
BC = logical record 
number 
HL => UREC if LRL<>0 
Same as for READ 
Same as for READ 

While the information in the manual is mostly complete, the 
following errors and incompatibilities should be noted: 

ERN contains the last record number when a file is opened. 
Following a write operation, it contains the number of the 
record just written. When writing a record into the middle of 
a file, ERN must be fixed before the file is closed. 

The error message subroutine at 4409d sometimes prints 
messages of an incorrect length, producing a message that 
scrolls off the video display before you can read it. 	It is 
best simply to print the error number, or to include error-
recovery procedures in user programs. 

There is a major incompatibility between all versions of 
TRSDOS and NEWDOS and NEWDOS80 concerning the way in which the 
EOF, ERN and NRN parameters in the DCB are maintained. When 
operating under NEWDOS or NEWDOS80, ERN contains the ending 
record number only when the EOF is on a sector boundary. 
These details are described in Apparat's "ZAP" documentation, 
which gives a list of corrections for NEWDOS version 2.1., and 
in the NEWDOS80 documentation. 



DISK FILES 

17.1 The Disk Directory 

The disk directory, normally placed on track 17 unless that 
track is locked out, is the key to understanding the entire 
file structure on the diskette. 	Unfortunately, Radio Shack 
has never released many details about these technical matters, 
but much useful information is contained in the documentation 
for Apparat's NEWDOS and NEWDOS80, and in H.C. Pennington's 
TRS-80 DISK & OTHER MYSTERIES. 

The first two sectors of the directory track contain the 
Granule Allocation Table (GAT) and Hash Index Table (HIT). 
The remaining eight tracks contain directory entries, either 
primary entries ("FPDE" for "File PriMary Directory Entry") or 
extension entries ("FXDE" for "File Extension Directory 
Entry"). Each entry is 32 bytes long. 	There is thus a 
maximum of eight entries per sector and 64 entries (which may 
mean less than 64 files) on the diskette. (Why the DOS allows 
a maximum of 50 files on a formatted diskette and 60 on a 
system diskette is unknown.) 	All of this data is quite 
straightforward to interpret if you know how. 

146 
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17.2 The GAT Sector 

The GAT sector contains two tables indicating the space 
available for files on the disk and whether any tracks are 
locked out. 	In addition, it contains the hash code for the 
diskette's password, the diskette name and date, and the AUTO 
command file that is to be called on power on or reset. All 
passwords are encoded in a "hash code" explained below (see 
section 17.6). 

The first 96 bytes of the GAT sector (bytes 00 to 5FH) 
contain the Granule Allocation Table itself. Since the Radio 
Shack disk drives use only 35 tracks, only the first 35 bytes 
(00 to 22H) are actually used, although the DOS contains 
provision for expansion up to 96 tracks on the disk. 	Each 
byte simply indicates whether one or both granules on the 
track is free or already allocated to a file, according to the 
following table: 

binary 	hexadecimal 	meaning  
11111100 	FC 	both granules 

(sectors 0-9) free 
11111101 	FD 	only first granule 

(sectors 0-4) allocated 
11111110 	FE 	only second granule 

(sectors 5-9) allocated 
11111111 	FF 	both granules 

(sectors 0-9) allocated  

The next 96 bytes contain the Track Lock Out Table. This 
table is exactly the same as the GAT, only its function is to 
tell the DOS whether a track can be used at all. The purpose 
of these tables is to make it simple for the DOS to know how 
much space it has available and where the space is. 

Why would a track be locked out? 	There are several 
reasons. 	It can be locked out because the track could not be 
verified during a FORMAT or BACKUP operation. 	You may also 
want to use special software, such as that described in 
Chapter 16, to write certain tracks and therefore not make 
them available for the DOS. 

The final 64 bytes of the GAT sector contain a variety of 
miscellaneous information. The password hash code is in bytes 
CE-CFH. The diskette name and date are in bytes DO to DF; 
each of these requires exactly eight bytes. Finally, the AUTO 
command file is in EO-FF, indicated simply as a command 
followed by a carriage return. The absence of a command is 
indicated by placing a carriage return in byte EO. 	The 
remaining bytes are filled with FF. A map of the entire GAT 
sector is shown below. 
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"GAT" Sector Map (Track 17, sector 0) 

0123 
00 < 
10 
20 
30 
40 
50 
60 < 
70 
80 
90 
AO 
BO 
CO < 
DO < 
E0 <-- 
FO 

4 5 678 9 A BCDEF 
GRANULE ALLOCATION TABLE 	 

(unused) 
(unused) 
(unused) 

TRACK LOCK OUT TABLE 	 

(unused) 
(unused) 
(unused) 

(UNKNOWN) 	><PSW> 
DISKETTE NAME AND DATE 	 
"AUTO" COMMAND FILE 	 

17.3 The "HIT" Sector 

The HIT sector (sector 1 of the directory track) contains 
information concerning each file name in the directory. 	Only 
the first eight bytes of each 32-byte segment of the sector 
are used. Each file name in the directory has a single byte 
of hash code in the table. The POSITION of the byte in the 
table relates to its address in the direktory. 	The last 
hexadecimal digit (0-7) plus 2 gives the sector number in the 
directory track where the file entry is stored, and the first 
digit (only even values from 0 to E) times 16 gives the 
relative byte where the entry starts within the sector. 	The 
following map shows the correspondence between the HIT sector 
and the directory entries: 

0 	1 	2 	3 	4 	5 	6 	7 	+ 2 = sector 
00 200 300 400 500 600 700 800 900 	(bytes 8-F unused) 
20 220 320 420 520 620 720 820 920 
40 240 340 440 540 640 740 840 940 
60 260 360 460 560 660 760 860 960 
80 280 380 480 580 680 780 880 980 
AO 2A0 3A0 4A0 5A0 6A0 7A0 8A0 9A0 
CO 2C0 3C0 4C0 5C0 6C0 7C0 8C0 9C0 
E0 2E0 3E0 4E0 5E0 6E0 7E0 8E0 9E0  

*16 = byte 

In this map, a number like "280" means "sector 2, byte 80H" of 
the directory track. Each directory entry is 32 bytes long. 
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If you look at a listing of a HIT sector for a particular 
diskette, you may notice that some of the codes for different 
files are identical. 	This is perfectly normal, and simply 
means that the number produced must correspond to the code 
derived from the name of the file. It does not mean that all 
codes must be unique. The purpose of the HIT sector is to 
tell the DOS where active entries are located within the 
directory, and then to verify that these entries correspond to 
the files specified. 	A zero in the HIT byte means that no 
entry is stored in the directory. 

17.4 File Primary Directory Entries (FPDEs) 

The bulk of the directory track, sectors 2-9, is reserved for 
file entries. Almost all of these are FILE PRIMARY DIRECTORY 
ENTRIES or FPDEs. A FILE EXTENSION DIRECTORY ENTRY or FXDE 
occurs only when a particular file is not only very large, but 
also split among more than four separate extents. 	In the 
remaining discussion we will refer to directory entries by 
their shorthand names, FPDEs or FXDEs. 

Each FPDE or FXDE is 32 bytes long, the same as the TRSDOS 
DCBs. The purpose of the FPDE is to provide information on 
the name of the file, what type of file it is, whether it has 
update or access passwords, and where it is located. The FXDE 
gives additional information on where the file is located. 
Since space is always allocated in terms of granules, this is 
the most complicated aspect of the entries. 

The way space allocation works is as follows: when the DOS 
allocates a granule to the file, it checks to see that this is 
the first free granule following used space. As sectors are 
added to the file, additional granules are allocated following 
the first one, until a sector is encountered that is being 
used by another active file. At this point the DOS issues 
another extent to the file, which begins with another granule 
on a completely different track and sector. The more files 
that are added to a diskette, the more complicated the space 
allocation becomes. 	It is quite common for files to have 
several extents on different tracks, jumping all about the 
diskette. There is room for four extents in the FPDE and four 
more in each additional FXDE. 

The information in the FPDE is quite specific, and can be 
summarized in tabular form: 
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Byte  

	

(hex) 	Meaning  
0 	File Type: Bit 7: 0=FPDE, 1=FXDE 

Bit 6: 1=system file, 0=non-system file 
Bit 5: unused 
Bit 4: 1=file exists in HIT sector, 

0 = file killed 
Bit 3: 	1=invisible file, 0=visible 
Bits 0-2: protection level, according to 

the following code: 
(111 binary=) 7 = no access 

6 = execution access only 
5 = read and execute only 
4 = write, read, execute 
3 = (unused) 
2 = rename, write, read, execute 
1 = kill, rename, write, read, 

execute 
0 = no restrictions 

	

1-2 	Unused by FPDE. 
3 	End of File (EOF) byte: last byte used in last 

sector of the file. 
4 	Logical Record Length (LRL): this concept is used 

only by VTOS 3.0 and NEWDOS80. 

	

5-C 	File Name: 8 characters, padded with blanks on the 
right if necessary. 

	

D-F 	Extension: 3 characters, padded with blanks as name. 

	

10-11 	Update Password, stored as 2-byte hash code. 

	

12-13 	Access password, stored as 2-byte hash code. 

	

14-15 	EOF Relative Sector: if the EOF byte (3) contains 
zero, then this byte is the relative sector 
count of the file; but if byte 3 is non-
zero, then it contains the relative count 
plus one. Since a file may contain more 
than 256 sectors, this entry is a two-byte 
word, stored in reverse (LSB/MSB). 

	

16-1F 	Five 2-byte pairs specifying EXTENTS: 
1st byte: if FF (255), signifies end of extents. 

if FE (254), then 2nd byte contains a 
DIRECTORY ENTRY CODE (DEC) pointing 
to an FXDE that contains additional 
extent information. 

if 0-22 (0-34), TRACK NUMBER on diskette 
where this entry starts. 

2nd byte (if 1st byte <254): 
bits 5-7: number of granules from start of 

track to start of eptent (0 or 1). 
bits 0-4: number (-1) of contiguous granules 

assigned to this extent. 
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The first byte of the file extent is easy to read. it is 
simply the track number. The second byte must be broken down 
into bits, but the following simple rules apply: 

1. If this byte is 0-19H, the extent starts at sector 
zero. 

2. If it is 20H or greater, the extent starts at sector 
five. 	In this case, subtracting 200 from the value in this 
byte will give you the granule count. 

Let us clarify the extent bytes with some examples: 

(a) 12 00 The extent begins on 	track 12H 	(la), 	sector 
zero. 	One granule 	is assigned 	to 	the extent. 

(b) 05 21 The extent begins on track 5, 	sector 5. 
Two granules are assigned to this extent. 

(c) 15 23 The extent begins on track 15H 	(21), 	sector 
5. 	Four granules are assigned 	to 	the extent. 

(d) 13 30 The extent begins on track 13H 	(19), 	sector 
5. 	17 granules are assigned to 	this extent. 

17.5 File Extension Directory Entries 	(FXDEs) 

FXDEs contain only information about file extents, and a 
pointer to the FPDE. All remaining data about the file is in 
the FPDE. The bytes used by the FXDE are as follows: 

Byte 	Meaning  
0 	> 80H 	(Bit 7=1 for FXDE) 
1 	DEC to FPDE (see below) 
2-15 	unused, and should contain zeros. 
16-1F 	Extents, same as in FPDE.  

If byte 30 of the FPDE contains the value FE (254), then 
byte 31 contains a DIRECTORY ENTRY CODE (DEC) pointing to the 
FXDE. 	Similarly, byte 1 of the FXDE contains a DEC pointing 
back to the FPDE. If you recall the information about the HIT 
sector, all directory entries are stored in 32-byte blocks in 
sectors 2-9 of the directory track. The DEC byte is decoded 
as follows: 

Bits 0-2 + 2 = the sector containing the FXDE (or FPDE). 
Bits 3-4: unused. 
Bits 5-7 = the number of the entry within the sector. 

(There are 8 32-byte entries in each sector, 
numbered 0-7.) 
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The 
DECs: 

following 

Hex Binary 
(a)  40H = 010 00 

(b)  A6H = 101 00 

(c)  83H = 100 00 

Meaning  
sector 2, entry 2 (the THIRD 
entry, starting from 0). 
This entry is in bytes 40-5FH 
(64-95) of the sector. 

sector 8, entry 5, stored in 
bytes AO-BFH (160-191). 

sector 5, entry 4, stored in 
bytes 80-9FH (128-159). 	 

110 

011 

000 

examples may help clarify how to decode 

17.6 Passwords and Hash Codes 

"Hash code" is a term describing the process for taking a 
character string and converting it into an encoded value. 
Each byte of the string is multiplied by some value. The 
codes are then added together to produce the hash. 	Different 
strings may produce the same values, and there are hundreds of 
different hashing methods. 

All passwords stored in the directory track are stored in 
hash code, so that you cannot simply read the sectors and find 
out what they are. 	If you want to read a file that is 
protected by a password that you don't know, the easiest 
procedure is to modify the diskette directory so that it 
contains a password that you do know. 	The password for a 
string of all blanks, indicating no password, is 96 42. Both 
the SUPERZAP and M0N4 programs contain procedures for 
modifying disk sectors independent of the file structure. 

If you want to find out the hash code for a particular 
password, you need to know the formula used by Radio Shack. 
The password, a string of 8 bytes padded with blanks on the 
right, is operated on according to the polynomial 

X**16 + X**12 + X**5 + 1 

and the numerical result is the two-byte hash code. The 
following program allows you to input a password or exactly 
eight bytes (no backspacing permitted!), and then displays the 
hash code: 

ORG 	7000H 
START 
	

CALL 	01C9H 	;clear screen 
LD 	A,14 	;cursor on 
CALL 	33H 
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NEXT 	LD 	A,'?' 	;print prompt 
CALL 	338 
[o 8L,paS8WD 	;buffer 
[o u,8 	;8 bytes 

zmPur CALL 	498 	;input string 
Lo 	(8L),a 
CALL 	338 	;display 
INC 	HL 
DJN% 	INPUT 
CALL 	Cn 	;print carriage return 
LD 	8L,PASSWD+7 
Lo 	D3,lE0C8 	/initial code 
Lo 	C,D 	/8 characters 
Jo L4 

Ll 	Lo 	a,8 
L2 	eo o 

oa 	8 
Jm mC,L3 
Lu 	A,108 
XUu 	D 
LD 	8,u 
Q} 	u,888 
XOo 	o 
Lo 	D,A 

L3 	DJ0u 	L2 
L4 	LD 	 ,D 

XOB 	(8L) 
Lo 	o,x 
DEC 	8L 
DEC 	C 
J8 mz,[l 
8X 	oO,8L 	;result to 8L 
Lo 	 ,L 	;print in 
CALL 	HEX 	;reverse order 
LD 	a,8 
CALL 	8OV 
CALL 	Ca 	;print carriage catuco 
JR NEXT 	/get another password 

Co 	Lo 	a,l3 
Je ]]a 

HEX 	pUGu 	AF 	;print & i-n hex 
naCa 
ouC& 
aoCa 
uBCu 
CALL 	8EX2 
POP 	AF 

8EX2 	AND 	15 
ADD 	a,308 
Cg 	3A8 
Je C,3]8 
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&oo u,7 
Jr 33e 

eAGSwn ooFG 8 
nmo GrAar 

This program does not provide a formula for discovering the 
paaaoncd corresponding to a particular uaob code, but lets you 
experiment to find a specific value. This is the method used 
for ToGonG 2.1 and 2.2, but it has been modified for 2.3. The 
following table shows all the x000u hash nodes and passwords 
used by zgSnOG 2.1, 2.2 and 2.3, muwo0s 2.1, and vzOs 3.0: 

8aab Code password(s) Used by  
1Fo2 'm3oz 

- 
Access for oV0T/SyS, all DOSS 

210E 'aJzJ xnnees for system files, 
all DOSS 

2A5F 'aGeU ooneoa for VTOS 3.0 FORMAT, 
oacKDe, etc. 

607F 1 8Ors Update for 800cySYS, all o0Sa 
782F 'BASIC Update for zxSoo[ 3.2 a 2.3 

BASIC, oaSzoa 
8130 'oVCoou ' caGoOS 2.1 a mEWo0G FORMAT, 

COPY, BASIC, oaCKup 
9643 ALL files with no password 
982r 'soamxT' Update for zasooS 2.2 & 2.3 

FORMAT 
u26I 'F3GuM raSn0S 2,1 system files 

^mV36 
a71D 'omuV ' Update for oze/GYG, all onSo 
acA8 'BACKUP ' updatm for rnGooS 2.2 a 3.3 

eaCuVp 
oo61 'L0s4 ' r000OS 2.2 a 2.3 system files 
E042 'PASSWORD' Disk password, all o0Sa 
uB29 '%mzu ' Update for system files, 

all D0Ga 
F9o5 'DLGD acoeea for nIo/sYG, all DOSS  

17.7 File Structures and Types 

Several different types  of files are stored on diskettes: 
Basic program files, object program files, system files, and 
data files. Special types of files include Editor/Assembler 
source files and Electric Pencil data fileo, File types are 
oaoaIIy indicated by the extension part of the file name 
(following the ^/^). It is always a good idea for you to use 
extensions even though they cause more typing. Standard 
extensions are "BAS" for Basic programs, "Cmo" for object 
programs, ^oa~^ for data files, ~SYS^ for system files, "xSM" 
or "sOn^ for Editor/Assembler source files, and ^ecc" for 
Electric Pencil files. 
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Files are simply blocks of 256 bytes, stored in successive 
sectors of the diskette. The system software ALWAYS writes 
256 bytes at a time, meaning that it writes whatever garbage 
is left in memory in the last sector following the last byte 
that you use. Another important point is that all standard 
file types use 256-byte records, although Basic programs are 
able to read only 255 bytes because of the limitations on the 
size of Basic strings. 

(A) ASCII Basic Program Files 

Files stored in this form appear exactly as they were 
entered into memory. 	LISTing the program under the DOS 
produces the same listing as under Basic. Each line begins 
with a line number, followed by a space and the program text, 
terminating in a carriage return. Loading files stored in 
this form takes longer, because each line must undergo a 
translation process just as when you type it in. One 
advantage of ASCII Basic program files is that they can be 
read and edited by the Electric Pencil. 

(B) Binary Basic Program Files 

Most Basic programs are stored in this form, which is 
actually a dump of the way in which the program is stored in 
memory during execution. 	Line numbers are stored in two 
bytes, and each Basic key word is translated into its binary 
"token". Other items, such as variable names and strings, are 
not translated. The very first byte of the file is FFH (255). 
Following that byte, individual lines are encoded as units 
according to the following scheme: 

bytes 1-2: pointer to NEXT line number in memory 
bytes 3-4: line number, in binary (LSB/MSB) 
bytes 5-n: program text (n=last byte of text) 
byte n+l: zero. 

The end of the program is recognized by zeros in bytes 1-2 
of the line code. When combined with zero at the end of the 
previous line, they produce a series of three successive 
zeros. 

(C) Object Program Files 

Object program or command files are produced by the 
Editor/Assembler program, or transferred to the disk by the 
TAPEDISK utility or some other program like MON4. 	An object 
program is executable machine code. 	All that is necessary is 
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for it to be read into the proper locations, and then for 
control to be transferred to the starting address. (For this 
reason, object programs must not be read into the portion of 
RAM occupied by the DOS, for the DOS will be bombed.) 

Object programs are loaded in blocks which have the 
following format: 

byte 1: 

byte 2: 
bytes 3-4: 

bytes 5-n: 
byte n+l: 

code for function of bytes in block: 
01 = load into address specified 
02 = entry point address 
any other value = do not load this block 

(it contains comments only) 
byte count (usually 80H or less) 
address where block loaded or control 
transferred to 
data (unused if byte 1=2) 
checksum for block 

The transfer address must be the last block in the file. 
If you do not specify an address to the Editor/Assembler 
program, this value defaults to zero. 

(D) System Files 

System files, including SYSO to SYSn as well as BOOT/SYS 
and DIR/SYS, have exactly the same format as object program 
files. (DIR/SYS has a different structure discussed in detail 
above.) 	All system files on standard diskettes have an 
extensive copyright notice at the beginning. 

(E) Editor/Assembler Source Files 

Source files to the disk version of the Editor/Assembler 
program (available on NEWDOS) use the same format as source 
tapes. Each line is stored as a separate short block. 	The 
complete format is as follows: 

byte 1 (of file): D3H 
bytes 2-7: file name, stored as succession 

of six characters padded with blanks. 
Do not rename EDTASM files! 

bytes 1-5 (of block): line number, ASCII with bit 7 
set (80H added to ASCII value). 

byte 6: blank space (20H) 
bytes 7-n: complete line statement, terminating with 

carriage return (005). Right arrow TAB 
key stored as 09H. 

last byte of file: lAH (end-of-file byte) 
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(F) Electric Pencil Files 

These files are simply a string of ASCII characters with no 
special codes. Each record terminates with a carriage return, 
and the end of the file is signified by the EOF byte 00. 

(G) Data Files 

Data files have no set rules for their structure. You make 
the rules when you write the data and read it back, or when 
you use the FIELD statement in Basic. 
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APPENDIX A: Zilog Tables of Z-80 Instructions 

The following section gives a summary of the Z-80 instruction 
set. The instructions are logically arranged into groups as 
shown in tables 7.0-1 through 7.0-11. Each table shows the 
assembly-language mnemonic OP code, the actual OP code, the 
symbolic operation, the content of the flag register following 
the execution of each instruction, the number of bytes 
required for each instruction, as well as the number of memory 
cycles and the total number of T states' (external clock 
periods) required for the fetching and execution of each 
instruction. 
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Mnemonic 
Symbolic 
Operation 

Flags OP-Code No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
Cycles Comments C Z P/V S N H 76 543 210 

LD r, r' r•- r' 01 r r' 1 1 4 r, e Reg. 
LD r, n r .i- n 00 r 110 2 2 7 000 B 

+- n -. 001 C 
LD r, (HL) r ..- (HL) 01 r 110 1 2 7 010 D 
LD r, (IX+d) r +- (1X+d) 11 011 101 3 5 19 011 E 

01 r 110 100 H 
.--. d -+ 101 L 

LD r, (IY+d) r .-- (1Y+d) • • .a a a • I1 III 101 3 5 19 111 A 

01 r 110 
.- d -.. 

LD (HL), r (HL) +-. r 01 110 r 1 2 7 
LD (1X+d), r (IX+d) ..--. r 11 011 101 3 5 19 

01 110 r 
d 

LD (1Y+d), r (IY+d).- r II III 101 3 5 19 
01 110 r 
+- d .+ 

LD (HL), n (HL) ..--- n 00 110 110 2 3 10 

LD (IX+d), n (1X+d) ..- n 11 011 101 4 5 19 
00 110 110 
.- d -.. 

LD (IY+d), n (IY+d) .--, n 11 111 101 4 5 19 
00 110 110 

d 
4-- n -,. 

LD A, (BC) A +. (BC) 00 001 010 I 2 7 
LD A, (DE) A +-. (DE) 00 011 010 1 2 7 

LD A, (nn) A +- (nn) 00 1 1 1 010 3 4 13 

,-. n -,. 
LD (BC), A (BC) -i- A 00 000 010 1 2 7 
LD (DE), A (DE) ,- A 00 010 010 I 2 7 
LD (nn), A (nn) +- A 00 110 010 3 4 13 

n -, 
LD A, I A .- I • I 1FF 10 0 11 101 101 2 2 9 

01 010 1 1 1 
LD A, R A +-II • t IFF t 0 0 11 101 101 2 2 9 

01 011 111 
LD I, A 1 +- A 11 101 101 2 2 9 

01 000 1 1 1 
LD R, A R •i- A 11 101 101 2 2 9 

01 001 1 1 1 

Notes: r, r' means any of the registers A, B, C, D, E, H, L 

IFF the content of the interrupt enable flip-flop (IF F) is copied into the P/V flag 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 

t = flag is affected according to the result of the operation. 

8-BIT LOAD GROUP 
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Mnemonic 
Symbolic
Oera 

Flap Op-Code No. 
of 

rytes 

No. 

Zfyelles 

No. 

;ftelfes Comments C Z IV S N H 76 543 210 

LD dd, nn dd .-nn 00 dd0 001 3 3 10 dd Pair 
.- 	n 	-). 00 BC 

=- 	n 	-.. 01 DE 
LD IX, nn IX .- nn II 	Ott 	101 4 4 14 10 HI. 

00 100 001 11 SP 
ATT 	n 	— 

LD IY, nn IY .- nn 11 	III 	101 4 4 14 
00 100 001 

LD HL, (nn) H .- (nn+1) 00 101 010 3 5 16 
L .- (nn) 

LD dd, (nn) dcIH .- (nn+1) I I 	101 	101 4 6 20 
MIL .- (nn) 01 	ddl 011 

LD IX, (nn) IXH .- (nn+1) I 1011 	101 4 6 20 
IXL •-• (nn) 00 101 010 

LD IY, (nn) IY, .- (nn+1) 11 	III 	101 4 6 20 
1YL .- (nn) 00 101 010 

LD (nn), HI. (nn+1) — H 00 100 010 3 5 16 
(nn) .- L 

LD (nn),dd (nn+1) — dd, 	 II 	101 	101 4 6 20 
(nn) — ddL 01 dd0 011 

LD (nn), IX (nn+1) .- IXH 	 II 	011 	101 4 6 20 
(an).- IXL 00 100 010 

LD (nn), 1Y (nn+1) .-IYH 	 II 	III 	101 4 6 20 
(nn) .- WL 00 100 010 

LD SP, HL SP .- HL • • • • • • II 	111 00) 1 1 6 
LD SP, IX SP—IX Ii 	011 	101 2 2 10 

11 	Ill 	001 
LD SP, IY SP .- IY 11 	III 	101 2 2 10 

11 	III 	001 qq Pair 
PUSH qq (SP-2) — qqL • o o 	• • • 11 qq0 101 I 3 11 00 BC 

(SP-1).-99H 01 DE 
PUSH IX (SP-2) .- IXL 	 

(SP-1) .- 1XH 
11 011 	101 
11 	100 101 

2 4 IS 10 
11 

HL 
AF 

PUSH IY (SP-2) .- 1YL 	 11 	III 	101 2 4 15 
(SP-1) .- FIR II 	IGO 101 

POP qq qqH*- (SP+1) • • • • • • 11 qq0 001 I 3 10 

"L(SP) 
POP IX 1XH .- (SP+1) 	 11 011 	101 2 4 14 

1XL .- (SP) II 	100 001 
POP IY IYH •- (SP+1) • a • • * 	• II 	Ill 101 2 4 14 

IYL —(SP) 11 	100 001 

Notes: dd is any of the regist r pairs BC DE, HL, SP 
qq is any of the register pairs AF BC, DE, HI. 
(PAIR)H, (PAIR)L re er to high order and low order eight bits of the register pair respectively .  

Eg. BCL = C, AFH = A 

Flag Notatloor • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
flag is affected according to the result of the operation, 

16-BIT LOAD GROUP 



Mnemonic 
Symbolic 
Operation 

Flags Op-Code 
No. 
of M 
Cycles 

No. 
of T 
States Comments CZ 

P 
/ 
VS NH 76 543 210 

No. 
of 
Bytes 

EX DE, HL DE -. HL 11 101 011 1 1 4 
EX AI:. AF' AF - AF' 00 001 000 I 1 4 
EXX BC 

DE DE) 
H L' 

11 011 001 1 1 4 Registerank and 
auxiliary register 
bank exchange 

EX (SP), HL H - (SP+1) 11 100 011 I 5 19 
I ..-. ISP) 

EX (SP), IX IXH-(SP+1) 11 011 101 2 6 23 
IXL - (SP) II 100 011 

IX (SP), IY 1YH-(SP+1) 11 Ill 101 2 6 23 
IYL -(SP) II 100 011 

0 
LDI (DE).- (HL) e • 1 • 0 0 11 101 101 2 4 16 Load (HL) into 

DE - DE+ I 

HL - HL+1 
BC - BC- I 

10 100 000 (DE), increment the 
pointers and 
decrement the byte 
counter (BC) 

LDIR (DE) - (IIL) 0 • 0 0 Il 101 101 2 5 21 If BC 0 0 
DE - DE+1 10 110 000 2 4 16 If BC = 0 
HL- 11L+1 

B( - BC-I 

Repeat until 

In. =0 
(2) 

l HD WI.) - (IIL) • a 1 • 0 0 II 101 101 2 4 16 
DI - D1.-1 10 101 000 

HL - HL-1 

BC- BC-I 

IDUR (DI ) - (HI) • • (I e 0 0 11 101 101 2 5 21 IfBC0 0 
DI - DI -1 10 11 I 000 2 4 16 If BC = 0 
(IL +-111+1 

BC - B( -I 

Repeat until 

BC = 0 

0 0 
CPI A- (HL) • I 1 I I 111 101 101 2 4 16 

HL - fIL+ I 10 100 001 

B( - BC - I 

00 
UPIR A - (HI ) • I 1 I 1 1 11 101 101 2 5 21 If BC *0 and A # (HI 

III - 11L+ I 10 110 001 2 4 16 If BC = 0 or A = (HL) 
Ii( - BC-1 

Repi-at until 

A = (HU or 

BC = 0 

0 01 
( PD A - tHI.,) • t I I I I I 1 101 101 1 4 16 

Ill.-HI-I 10 101 001 
13( - BC-1 

00 
CPDR A - (111.1 • I I I I 1 II 101 101 2 5 21 'IBC* 0 and A 0 (HL 

HL - HL-I 10 III 001 2 4 16 If BC = 0 or A = (HL) 
BC - BC-I 

Repeat until 

A = (HL) or 

13( =0 

Notes: 0 P/V flag is 0 it the exult of BC-I = 0. otherwise P/V = 1 

20 Z flag is 1 if A= (HL), otherwise Z = 0, 

liag Notation: • = Ilag not affected, 0 = flag reset. I = flag set. X = lag is unknown, 

t = Ilag is affected according to the result of the operation. 

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP 
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Flags Op-Code 
No, 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States  CZ 

P / 
VS NH 76 543 210 

I I V I 0 I 10 1000 r 1 1 4 

I I V 1 0 I 11 10001 110 2 2 7 

II WI 10 1000 110 I 2 7 
lIV 1 0 I 11 011 101 3 5 19 

10 10001 110 
- d 

II V I 0 1 11 III 101 3 5 19 
10 10001  110 

I I V I 0 I 1001 

I I V  I 1 1 010 

1 IVIII 011 
0 1 P 1 0 1 floo) 
otPtoo Lilol 
o I P I 0 0 1_1011 
tIVI I 1 11111  
o I V 1 0 1 00 r 10(1 I I 4 
oIV/0 1 00 110 100 1 3 II 
• IV10111 011 101 3 6 21 

00 110 

otVt0111 III 101 3 6 23 
00 . 11011110 
- d 

• :vil l  loi  

Symbolic 
Mnemonic Operation 

ADD A, r A A + r 
ADD A, n A A + n 

ADD A, (HL) A+- A + (Hi) 
ADD A, (IX+d + (IX+d) 

ADD A, (IY+d A-A+(IY+d( 

ADC A, s A.-A• s+CY 
SUB s A .-- A - s 
SBC A, s A A - s -CY 
AND s A A A s 
OR s A A V s 
XOR s A A s 
CP s A - s 
INC r r r + I 
INC (HU (In) - (-11..)+ I 
INC (IX+d) (IX+d) .- 

(1X+d)+1 

INC (1Y+d) (IY+d) - 
(1Y+d) + I 

DEC m m--1 

Comments 

r Reg, 
000 
001 
010 
011 E. 
100 (I 
101 L.  
1 1 1 A 

s is any of r, n, 
(IX+d), 

(1Y+d) as shown for 
ADD instruction 

The indicated bits 
replace the 000 in 
the ADD set above. 

m is any of r, (HL), 
(IX+d(, (IY+d) as 
shown for IN(' 
Same format and 
slates as IN(' 
Replace 11)1) with 
10 I in OP Lode 

Notes: The V symbol in the P/V flag column indicates that the P)V flag contains the overflow of the result 01 (he 
operation Similarly the P symbol indicates parity. V = I means overflow. V = 0 means not overflow P = I 
means parity of the result is even, P = 0 means parity of the result is odd 

Flag Notation: o = flag not affected, 0 = flag reset, I = flag set, X = flag is unknown. 
= flag is affected according to the result of the operation 

8-BIT ARITHMETIC AND LOGICAL GROUP 



Zilog Tables of Z-80 Instructions 	PAGE 163 

Mnemonic 
Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No, 
of M 
Cycles 

No. 
of T 
States Comments C Z 

f 
E 
V S N H 76 543 210 

DAA Converts acc. 
content into 
packed BCD 
following add 
or subtract 
with packed 

t 2. P t • 1 00 100 1 1 I 1 1 4 Decimal adjust 
accumulator 

BCD operands 
CPL A .— ik • • • • 1 1 00 101 111 1 I 4 Complement 

accumulator 
(one's complemer 

NEG A ,--. 0— A IIVSIIII 101 101 2 2 8 Negate acc, (two': 
01 000 100 complement) 

CCF CY 4—CY 2 • • • 0 X 00 111 111 1 1 4 Complement cant 
flag 

SCF CY -.— 1 1 • • • 0 0 00 110 111 1 1 4 Set carry flag 

NOP No operation 00 000 000 1 1 4 

HALT CPU halted 01 110 110 I I 

DI IFF .— 0 11 110 011 1 1 

El IFF .— 1 11 111 011 1 1 

IM 0 Set interrupt 11 101 101 2 2 
mode 0 01 000 110 

IM 1 Set interrupt 11 101 101 2 
mode 1 01 010 110 

IM2 Set interrupt 11 101 101 2 2 8 
mode 2 01 011 110 

Notes: IFF indicates the interrupt enable flip-flop 
CY indicates the carry flip-flop. 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
t = flag is affected according to the result of the operation. 

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS 

t) 
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Mnemonic 
Symbolic 
Operation 

Flags Op-Code of 
Bytes 

of 0
71;4 

Cycles 
o
Nipi 

States Comments C Z Piv..., S N H 76 543 210 

ADD HL, ss HI, •-• HL+ as / 0 0 * 0 X 00 ssl 001 1 3 11 es Reg. 

00 BC 

ADC HL, ss HL.-.HL+ ss +CY I 1 V I 0 X 11 101 101 2 4 15 01 
10 

DE 

01 ssl 010 
HL

11 SP 
SBC HL, ss HL.-HL-ss -CY 1 I V I 1 X 11 101 101 2 4 15 

01 ss0 010 

ADD IX, pp IX +-IX + pp i ar ra a 0 X II 011 101 2 4 15 pp Reg. 
00 ppl 001 00 BC 

01 DE 
10 IX 
II SP 

ADD 1Y,rr 1Y.-.1Y+ rr / • 0 0 0 X 11 I I 1 101 2 4 15 rr Reg. 
00 rrl 001 00 BC 

01 DE 
10 IY 
II SP 

INC ss ss .- ss + 1 00 ss0 011 I 1 6 

INC IX IX .-- IX + I II 011 101 2 2 10 

00 100 011 

INC IY IY .- IY + 1 11 111 101 2 2 10 

00 100 011 

DEC ss ss .-- ss I 00 ssl 011 1 I 6 

DEC IX IX -- IX - 1 11 011 101 2 2 10 

00 101 011 

DEC IY IY +- IY 1 11 III 101 2 2 10 

00 101 011 

Notes: ss is any of the register pairs BC, DE, HL, SP 
pp is any of the register pairs BC, DE, IX, SP 
rr is any of the register pairs BC, DE, IY, SP. 

Flag Notation: e = flag not affected, 0 = flag reset, I = flag set, X = flag is unknown, 
= flag is affected according to the result of the operation.. 

16-BIT ARITHMETIC GROUP 



Comments 

Rotate left circular 
accumulator 

Rotate left 
accumulator 

Rotate right circular 
accumulator 

Rotate right 
accumulator 

Rotate left circular 
register r 

r Reg. 

000 B 
001 C 
010 D 
011 
100 H 
101 
IllA 

Rotate digit left and 
right between the 
accumulator 
and location (HL). 
The content of the 
upper half of the 
accumulator is 
unaffected 

Instruction format and 
states ale as shown 
for RLC,m. To form 
new OP-code replace 

of RLC,m with 
shown code 
loon 
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Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States C Z 

P 
/ 
VS NH 76 543 210 

I••• 0 0 00 000 111 1 1 4 
El 	7 0 

t • • • 0 0 00 010 111 1 1 4 M MGME 

2 • • a 0 0 00 001 111 1 I 4 iii 32 

I * • • 0 0 00 011 111 1 1 4 EC= I 

I 1 P 8 0 0 11 001 011 2 2 8 
00 000 r 

I I P S 0 0 11 001 011 2 4 15 
00 RIOT* 10 

EI 	7 .16-0 ItP10 0 11 011 101 4 6 23 
v WU, (15+01 •5•01 11 001 011 

4-- d -+ 
0010001 1 10 

1 1 P 8 0 0 11 111 101 4 6 23 
11 001 011 
+- d -+ 
ooloodllo 

I I P I 0 0 II 	111=1: 10101 
=, (IIL) (IX,I) (IM]) 

I I P 1 0 0 Foil 11:::10 
=r 1111.1.11%.d) (IY,I) 

11Pt00 1111=311 30 10111 
al •-= r OIL) IIX•d) (15+0) 

Mil 	111=113 	0 ttP100 11001 
,,,,, r OIL) (Mal OWEI) 

ME= 1M 

tn,r (111 (IX,I) (IY•d) 
1 1 Pt 0 0 Ell 

OE= la I I P 1 0 0 nil 
.I r (al) 11X -,11 (I dl 

• P t 0 0 11 101 101 
01 101 111 

2 5 18 MICIEWEIE L 
MI 

• I P 1 0 0 11 101 101 2 5 18 1111111111136111E 
01 100 111 

Mnemonic 

RLCA 

RLA 

RRCA 

RRA 

RLC r 

RLC (HL) 

RLC (1X+d) 

RLC (lY+d) 

RL m 

RRC m 

RRm 

SLAm 

SRA m 

SRLm 

RLD 

RRD 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
= flag is affected according to the result of the operation. 

ROTATE AND SHIFT GROUP 



BIT b, (IY+d) 

SET b, r 

SET b, (HL) 

SET b, (IX+d) 

SET b, (IY+d) 

RES b, m 

Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States Comments C Z 

P / 
V S N H 76 543 210 

Z ...-Tb 0 t XX 0 I 11001 011 2 2 8 r Reg. 
01 b r 000 B 

0 IXX 0 1 1 1001 011 2 3 12 001 C Z (HL)b 01 0 D 
01 b 110 011 E 

Z +- (IX d)b o t X X 0 1 11 011 101 4 5 20 100 H 
11 001 011 101 L 

4-- d -. 
111 A 

01 b 110 b Bit Tested 
Z 4- (IY+d)b 0 t X X 0 1 11 1 I 1 101 4 5 20 000 0 

11 001 011 001 1 
010 2 

d 011 3 
01 b 110 100 4 

101 5 
110 6 
I 1 1 7 

% ..-- 11 001 011 2 2 8 
Ej b r 

(HL)b •-• 1 11 001 011 2 4 15 
0 b 110 

(IX+d)b ..- 1 11 011 101 4 6 23 
11 001 011 

d 
E b 110 

(1Y+d)b II III 101 4 6 23 
11 001 011 
+- d -+ 
[1:1 b 110 

% ..- 0 III To form new OP- 

mEr, (Ht.), code replace rj 
of SET b,m with (IX+d), (IY+d) 10 Flags and time 
states for SET 
instruction 

Mnemonic 

BIT b, r 

BIT b, (HL) 

BIT b, (IX+d) 

Zilog Tables of Z-80 Instructions 
	PAGE 166 

Notes: The notation sb indicates bit b (0 to 7) or location s. 

Flag Notation: 0 = flag not affected, 0 = flag reset, I = flag set. X = flag is unknown, 
$ = flag is affected according to the result of the operation 

BIT SET, RESET AND TEST GROUP 
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Mnemonic 
Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States Comments C Z 

P 
/ 
V S N H 76 543 210 

JP nn PC —nn 11 000 011 3 3 10 
.- n -. 
.- n -. cc Condition 

IP cc, nn If condition c 11 cc 010 3 3 10 000 NZnon zero 
is true PC t-nn, 
otherwise 
continue 

•- n -.. 
.- --. n 

001 
010 
011 

2 zero 
NCnon carry 
C. carry 

100 PO parity odd 
101 PE parity even 
110 P sign positive 

JR e PC — PC + e 00 011 000 2 3 12 111 M sign negative 
e-2 -. 

JR C, e If C = 0, 00 I 1 1 000 2 2 7 If condition not met 
continue .- e-2 — 
If C = 1, 
PC — PC+e 

2 3 12 If condition is met 

JR NC, e If C = 1, 00 110 000 2 2 7 If condition not met 
continue .- e-2 --, 
If C = 0, 
PC .- PC + e 

2 3 12 It condition is met 

JR Z, e If 2 = 0 00 101 000 2 2 7 It condition not met 
continue .- e-2 -. 
If Z = I, 
PC ..-. PC + e 

2 3 12 It condition Is met 

JR NZ, e If Z = 1, 
continue 

00 100 000 2 2 7 It condition not mi 

If 2 = 0, 
P(' +- PC + e 

2 3 12 If condition met 

JP (HL) PC t- HL 11 101 001 I I 4 

JP (IX) PC .- IX H OH 101 2 2 8 
11 101 001 

JP (IY) PC.-IY H 111 101 2 2 8 
H 101 001 

DJNZ,e B .- B-1 00 010 000 2 2 8 If B = 0 
If B = 0, 
continue +- e-2 -. 

If B * 0, 
PC .- PC +e 

2 3 13 IF B * 0 

Notes: e represents the extension in the relative addressing mode 
e is a signed two's complement number in the range <-126, 129> 
e-2 in the op-code provides an effective address of pc +e as PC is 
incremented by 2 prior to the addition of e. 

Flag Notation: ®= flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
= flag is affected according to the result of the operation.  

JUMP GROUP 
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Mnemonic 
Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States Comments C 

P / 
Z V S N H 76 543 210 

CALL nn 

CALL cc, nn 

RET 

RET cc 

RETI 

RETN 

RST p 

(SP-I).--PCH 
(SP-2).-PCL 
PC.-nn 

If condition 
cc is false 
continue, 
otherwise 
same as 
CALL nn 

PCL.-(SP) 
PC .-(SP+I) 

If condition 
cc is false 
continue, 
otherwise 
same as 
RET 

Return fr 	m 
interrupt 

Return from 
non maslcable 
interrupt 
(SP-I).--PCH 
(SP-2).-PCL 
PCH.--0 
PCL..—P 

a a a a a a 

11 
.-- 
.-- 

11 
4-. 

.... 

II 

11 

II 
01 
11 
01 
11 

001 
n 
n 

cc 
n 
n 

001 

cc 

101 
001 
101 
000 

t 

101 
--.. 
--. 

100 
--. 
-.. 

001 

000 

101 
101 
101 
101 
111 

3 

3 

3 

I 

1 

1 

2 

2 

1 

5 

3 

5 

3 

1 

3 

4 

4 

3 

17 

10 

17 

10 

5 

I I 

14 

14 

11 

If cc 

If cc 

If cc 

If cc 
cc 

is false 

is true 

is false 

is true 
Condition 

000 
001 
010 
011 
100 
101 
110 
111 

t 

NZ 	non zero 
Z 	zero 
NC 	non carry 
C 	carry 
PO 	parity odd 
PE 	parity even 
P 	sign positive 
M 	sign negative 

P 
000 
001 
010 
011 
100 
101 
110 
1 l 1 

OOH 
08H 
10H 
18H 
20H 
28H 
3011 
3811 

Flag Notation: a = flag not affected, 0 = flag reset, I = flag set, X = flag is unknown 
t = flag is affected according to the result of the operation. 

CALL AND RETURN GROUP 
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Mnemonic 
Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States Comments C Z 

P / 
V S N H 76 543 210 

IN A, (n) A ..- (n) 11 011 011 2 3 11 n to AO - A7 
.- n -. Acc to A8 - A15 

IN r, (C) r.-(C) • IFt 0 1 11 101 101 2 3 12 C to A0 - A7 
if r = 110 only 
the flags will 
be affected 

01 r 000 B to A8 - Al5 

0 
INI (HL) ..- (C) X I X X 1 X 11 101 101 2 4 16 C to A0 - A7 

B ..- B - 1 10 100 010 B to A8 - A15 
HL .- HL + 1 

INIR (HL).- (C) X 1 X X I X II 101 101 2 5 21 C to A0 - A7 
13.•-B-1 10 110 010 If B* 0) B to A8 - A15 
HL ..- HL + 1 2 4 16 
Repeat until (If B = 0) 
B = 0 

0 
IND (HL).- (C) X I X X 1 X 11 101 101 2 4 16 C to AO - A7 

B ,-B • I 10 101 010 B to A8 - Al5 
HL ..-- HL - 1 

INDR (HL).- (C) X I X X I X II 101 101 2 5 21 C to AO - A7 
B .- B - I 10 III 010 (If B * 0) B to A8 - A15 
HL 4- HL -I 2 4 16 
Repeat until 
B = 0 

(If B = 0) 

OUT (n), A (n) .- A 11 010 011 2 3 11 n to A
O 

-- A
7 4- n -+ Ace to A8 - A15 

OUT (C), r (C).-r II 101 101 2 3 12 C to AO - A7 
01 r 001 B to A8 - A15 

0 
OUTI IQ .- (HL) X 1 X X I X 1 1 101 101 2 4 16 C to AO -- A7 

B ..- B - 1 10 100 011 B to A8 - A l 5 
HI, ..- HL + 1 

°Ilk (C) .- (HL) X I X X I X 11 101 101 2 5 21 C to AO - A7 
B ..- B - I 10 110 011 (If B * 0) B to A8 - A l 5 
HL ..- HL 4. I 2 4 16 
Repeat until 
B = 0  (It B = 0) 

0 
OUTD (C).- (HL) X 1 X X 1 X I 1 101 101 2 4 16 C to AO - A7 

B ..-- B - I 10 101 011 B to A8 - A15 
HL .- HL - 1 

OIDR (Q..- (HL) X I X X I X I I 101 101 2 5 21 C to AO - A7 
13 ,-B-I 10 111 011 (If B * 0) B to A8 - A l5 
HL —HL -1 2 4 16 
Repeat until 
B = 0 (If B = 0) 

Notes: 0 If the result of B - I is zero the Z flag is set, otherwise it is reset 

Flag Notation: o = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
= flag is affected according to the result of the operation.  

INPUT AND OUTPUT GROUP 
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ASCII/Hexadecimal Conversion Table PAGE 170 

uPr8moIX a: ASCII/Hexadecimal Conversion cable 

MGo 0 l 2 3 4 5 § 7 
000 001 WlN Oil 100 101 110 ill 

0 0000 mUL oLB SPACE 0 @ P @ p 
I 0001 Soo oCl ! l & O a g 
3 0010 8zx oC2 " 2 B R b c 
3 0011 mzK oC3 # 3 C S c a 
4 0100 EOz DC4 $ 4 D T d t 
5 0101 800 wan # 5 E U e u 
6 01I0 aCK GYN a 6 F V f v 
7 0111 a8L ozo ' 7 8 Vq g w 
8 1000 BS CAN ( D H X h X 
9 1001 8T oo ) 9 I Y i y 
A 1010 Lr GOa * ; J z j z 
B 101I VT ESC + ; K up ac k up ar 
C 1100 Fr FS , < L du mc l do ac 
D I10I Cn Gs - ~ M if ac m if ar 
E 1110 SO 0s . ~ N rt ac u rt ac 
F llll SZ US / ~ O cursor 

This table shows the correspondence between ASCII characters 
and their hexadecimal values. To read the chart, take the 
most-significant digit from the top cow and the least-
significant digit from the left column. 

The following abbreviations have been used to indicate special 
functions: 

mDLc 
Start of Heading 
Start of Text 
End of Text 
End of Transmission 
Enquiry 
Acknowledge 
Bell 
Delete 
Backspace 
Horizontal rauulatioo 
Line Feed 
Vertical Tabulation 
Form Feed 
Carriage Return 
Shift out 
Shift In 

Data Link Escape 
Device Control l 
Device Control 2 
Device Control 3 
Device Control 4 
Negative Acknowledge 
Synchronous Idle 

^ End of Transmission 
Block 
Cancel 
End of medium 
Special Sequence 
Escape 

^ File Separator 
« Group Separator 
~ Record Separator 
* Unit separator 
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The special functions marked with an asterisk have been given 
special meanings on the TRS-80, and hence the normal ASCII 
function is not available. 	These special meanings are as 
follows: 

Char Value Meaning 
SOH 	01 	BREAK key 
SO 	OE 	Cursor On 
SI 	OF 	Cursor Off 
ETB 	17 	32-character mode 
FS 	1C 	Home Cursor 
GS 	10 	Cursor to beginning of line 
RS 	lE 	Erase to end of line 
US 	1F 	Clear to end of screen 

In addition to these changes, it is also necessary to note 
that Radio Shack did not use standard ASCII values for the 
down arrow, left arrow, right arrow, cursor, and "shift.-@" 
keys. 
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APPENDIX 

OBJECT CODE 

C: 	Numeric List 

SOURCE 
STATEMENT 

of Z-80 	Instructions 

SOURCE 
OBJECT CODE 	STATEMENT 

00 NOP 328405 LD (NN),A 
018405 LD BC,NN 33 INC SP 
02 LD (BC),A 34 INC (HL) 
03 INC BC 35 DEC (HL) 
04 INC B 3620 LD (HL),N 
05 DEC B 37 SCF 
0620 LD B,N 382E JR C,DIS 
07 RLCA 39 ADD HL,SP 
08 EX AF,AF' 3A8405 LD A,(NN) 
09 ADD HL,BC 3B DEC SP 
OA LD A,(BC) 3C INC A 
0B DEC BC 3D DEC A 
OC INC C 3E20 LD A,N 
OD DEC C 3F CCF 
0E20 LD C,N 40 LD B,B 
OF RRCA 41 LD B,C 
102E DJNZ DIS 42 LD B,D 
118405 LD DE,NN 43 LD B,E 
12 LD (DE),A 44 LD B,H 
13 INC DE 45 LD B,L 
14 INC D 46 LD Br(HL) 
15 DEC D 47 LD B,A 
1620 LD D,N 48 LD C,B 
17 RLA 49 LD C,C 
182E JR DIS 4A LD C,D 
19 ADD HL,DE 4B LD C,E 
1A LD A,(DE) 4C LD C,H 
18 DEC DE 4D LD C,L 
1C INC E 4E LD Cr(HL) 
1D DEC E 4F LD C,A 
1E20 LD E,N 50 LD D,B 
1F RRA 51 LD D,C 
202E JR NZ,DIS 52 LD D,D 
218405 LD HL,NN 53 LD D,E 
228405 LD (NN),HL 54 LD D,H 
23 INC HL 55 LD D,L 
24 INC H 56 LD D,(HL) 
25 DEC H 57 LD D,A 
2620 LD H,N 58 LD E,B 
27 DAA 59 LD E,C 
282E JR Z,DIS 5A LD E,D 
29 ADD HL,HL 5B LD E,E 
2A8405 LD HL,(NN) 5C LD E,H 
2B DEC HL 5D LD E,L 
2C INC L 5E LD E,(HL) 
2D DEC L 5F LD E,A 
2E20 LD L,N 60 LD Hr B 
2F CPL 61 LD H,C 
302E JR NC,DIS 62 LD Hr D 
318405 LD SP,NN 63 LD H,E 



OBJECT CODE 

Numeric List of 

SOURCE 
STATEMENT 

Z-80 	Instructions 

OBJECT CODE 

PAGE 

SOURCE 
STATEMENT 

64 LD H,H 96 SUB (HL) 
65 LD H,L 97 SUB A 
66 LD H,(HL) 98 SBC A,B 
67 LD H,A 99 SBC A,C 
68 LD L,B 9A SBC A,D 
69 LD L,C 9B SBC A,E 
6A LD L,D 9C SBC A,H 
6B LD L,E 9D SBC A,L 
6C LD L,H 9E SBC A,(HL) 
6D LD L,L 9F SBC A,A 
6E LD L,(HL) AO AND B 
6F LD L,A Al AND C 
70 LD (HL),B A2 AND D 
71 LD (HL),C A3 AND E 
72 LD (HL),D A4 AND H 
73 LD (HL),E A5 AND L 
74 LD (HL) ,H A6 AND (HL) 
75 LD (HL),L A7 AND A 
76 HALT A8 XOR B 
77 LD (HL),A A9 XOR C 
78 LD A,B AA XOR D 
79 LD A,C AB XOR E 
7A LD A,D AC XOR H 
78 LD A,E AD XOR L 
7C LD A,H AE XOR (HL) 
7D LD A,L AF XOR A 
7E LD A,(HL) BO OR B 
7F LD A,A B1 OR C 
80 ADD A,B B2 OR D 
81 ADD A,C B3 OR E 
82 ADD A,D B4 OR H 
83 ADD A,E B5 OR L 
84 ADD A,H B6 OR (HL) 
85 ADD A,L B7 OR A 
86 ADD A,(HL) B8 CP B 
87 ADD A,A B9 CP C 
88 ADC A,B BA CP D 
89 ADC A,C BB CP E 
8A ADC A,D BC CP H 
88 ADC A,E BD CP L 
8C ADC A,H BE CP (HL) 
8D ADC A,L BF CP A 
8E ADC A,(HL) CO RET NZ 
8F ADC A,A Cl POP BC 
90 SUB B C28405 JP NZ,NN 
91 SUB C 038405 JP NN 
92 SUB D C48405 CALL NZ,NN 
93 SUB E C5 PUSH BC 
94 SUB H C620 ADD A,N 
95 SUB L C7 RST 0 

173 
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OBJECT CODE 
C8 
C9 
CA8405 
CBnn 
CC8405 
CD8405 
CE20 
CF 
DO 
D1 
D28405 
D320 
D48405 
D5 
D620 
D7 
D8 
D9 
DA8405 
DB20 
DC8405 
DDnnnnnn 
DE20 
DF 
EO 
El 
E28405 
E3 
E48405 
E5 
E620 
E7 
E8 
E9 
EA8405 
EB 
EC8405 
EDnnnnnn 
EE20 
EF 
FO 
Fl 
F28405 
F3 
F48405 
F5 
F620 
F7 
F8 
F9  

SOURCE 
STATEMENT 
RET 	Z 
RET 
JP 	Z,NN 
see below 
CALL Z,NN 
CALL NN 
ADC 	A,N 
RST 	8 
RET NC 
POP 	DE 
JP 	NC,NN 
OUT 	(N) ,A 
CALL NC,NN 
PUSH DE 
SUB 	N 
RST 	10H 
RET C 
EXX 
JP 	C,NN 
IN 	A, (N) 
CALL C,NN 
see below 
SBC 	A,N 
RST 	18H 
RET PO 
POP 	HL 
JP 	PO,NN 
EX 	(SP) ,HL 
CALL PO,NN 
PUSH HL 
AND N 
RST 	20H 
RET PE 
JP 	(HL) 
JP 	PE,NN 
EX 	DE,HL 
CALL PE,NN 
see below 
XOR N 
RST 	28H 
RET 	P 
POP AF 
JP 	P,NN 
DI 
CALL P,NN 
PUSH AF 
OR 
RST 	30H 
RET M 
LD 	SP,HL  

OBJECT CODE 
FA8405 
FB 
FC8405 
FDnnnnnn 
FE20 
FF 
CBOO 
CB01 
CB02 
CB03 
CB04 
CB05 
CB06 
CB07 
CB08 
CB09 
CBOA 
CBOB 
CBOC 
CBOD 
CBOE 
CBOF 
CB10 
CB11 
CB12 
CB13 
CB14 
CB15 
CB16 
CB17 
CB18 
CB19 
CB1A 
CB1B 
CB1C 
CB1D 
CB1E 
CB1F 
CB20 
CB21 
CB22 
CB23 
CB24 
CB25 
CB26 
CB27 
CB28 
CB29 
CB2A 
CB2B  

SOURCE 
STATEMENT 
JP 	M,NN 
El 
CALL M,NN 
see below 
CP 
	

N 
RST 
	

38H 
RLC 
	

B 
RLC 
	

C 
RLC 
	

D 
RLC 
RLC 
	

H 
RLC 
	

L 
RLC 
	

(HL) 
RLC A 
RRC B 
RRC C 
RRC D 
RRC 
	

E 
RRC 
	

H 
RRC 
	

L 
RRC 
	

(H 	L) 
RRC A 
RL 
	

B 
RL 
	

C 
RL 
RL 
	

E 
RL 
	

H 
RL 
	

L 
RL 
	

(H 	L) 
RL 
	

A 
RR 
	

B 
RR 
	

C 
RR 
	

D 
RR 
RR 
	

H 
RR 
	

L 
RR 
	

(HL) 
RR 
	

A 
SLA B 
SLA C 
SLA D 
SLA 
SLA 
	

H 
SLA 
	

L 
SLA 
	

(HL) 
SLA A 
SRA 
SRA 
SRA 
SRA 
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SOURCE 	 SOURCE 
OBJECT CODE 	STATEMENT 	OBJECT CODE 	STATEMENT 
CB2C 	SRA H 	CB66 	BIT 4,(HL) 
CB2D 	SRA L 	CB67 	BIT 4,A 
CB2E 	SRA (HL) 	CB68 	BIT 5,B 
CB2F 	SRA A 	CB69 	BIT 5,C 
CB38 	SRL B 	CB6A 	BIT 5,D 
C839 	SRL C 	CB6B 	BIT 5,E 
CB3A 	SRL D 	CB6C 	BIT 5,H 
CB3B 	SRL E 	CB6D 	BIT 5,L 
CB3C 	SRL H 	CB6E 	BIT 5,(HL) 
CB3D 	SRL L 	CB6F 	BIT 5,A 
CB3E 	SRL (HL) 	CB70 	BIT 6,B 
CB3F 	SRL A 	CB71 	BIT 6,C 
CB40 	BIT 0,B 	CB72 	BIT 6,0 
CB41 	BIT 0,C 	CB73 	BIT 6,E 
C542 	BIT 0,D 	CB74 	BIT 6,H 
CB43 	BIT 0,E 	CB75 	BIT 6,L 
C844 	BIT 0,H 	CB76 	BIT 6,(HL) 
C845 	BIT 0,L 	C877 	BIT 6,A 
CB46 	BIT 0,(HL) CB78 	BIT 7,B 
C847 	BIT 0,A 	CB79 	BIT 7,C 
CB48 	BIT 1,B 	CB7A 	BIT 7,0 
C849 	BIT 1,C 	CB7B 	BIT 7,E 
CB4A 	BIT 1,D 	CB7C 	BIT 7,H 
CB4B 	BIT 1,E 	CB7D 	BIT 7,L 
CB4C 	BIT 1,H 	CB7E 	BIT 7,(HL) 
CB4D 	BIT 1,L 	CB7F 	BIT 7,A 
CB4E 	BIT 1,(HL) CB80 	RES 0,B 
CB4F 	BIT 1,A 	CB81 	RES 0,C 
CB50 	BIT 2,B 	CB82 	RES 0,0 
CB51 	BIT 2,C 	CB83 	RES 0,E 
CB52 	BIT 2,0 	CB84 	RES 0,H 
CB53 	BIT 2,E 	CB85 	RES 0,L 
CB54 	BIT 2,H 	CB86 	RES 0,(HL) 
CB55 	BIT 2,L 	CB87 	RES 0,A 
C856 	BIT 2,(HL) CB88 	RES 1,B 
CB57 	BIT 2,A 	CB89 	RES 1,C 
CB58 	BIT 3,B 	CB8A 	RES 1,D 
CB59 	BIT 3,C 	CB8B 	RES 1,E 
CB5A 	BIT 3,D 	CB8C 	RES 1,H 
CBSB 	BIT 3,E 	CB8D 	RES 1,L 
CB5C 	BIT 3,H 	CBBE 	RES 1,(HL) 
CBSD 	BIT 3,L 	CB8F 	RES 1,A 
CBSE 	BIT 3,(HL) CB90 	RES 2,B 
CBSF 	BIT 3,A 	CB91 	RES 2,C 
CB60 	BIT 4,5 	CB92 	RES 2,D 
CB61 	BIT 4,C 	CB93 	RES 2,E 
CB62 	BIT 4,D 	CB94 	RES 2,H 
C863 	BIT 4,E 	CB95 	RES 2,L 
CB64 	BIT 4.8 	CB96 	RES 2,(HL) 
CB65 	BIT 4,L 	CB97 	RES 2,A 
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CB98 RES 3,B CBCA SET 1,D 
CB99 RES 3,C CBCB SET 1,E 
CB9A RES 3,D CBCC SET 1,H 
CB9B RES 3,E CBCD SET 1,L 
CB9C RES 3,H CBCE SET 1,(HL) 
CB9D RES 3,L CBCF SET 1,A 
CB9E RES 3,(HL) CBDO SET 2,B 
CB9F RES 3,A CBD1 SET 2,C 
CBAO RES 4,B CBD2 SET 2,D 
CBA1 RES 4,C CBD3 SET 2,E 
CBA2 RES 4,D CBD4 SET 2,H 
CBA3 RES 4,E CBD5 SET 2,L 
CBA4 RES 4,H CBD6 SET 2,(HL) 
CBAS RES 4,L CBD7 SET 2,A 
CBA6 RES 4,(HL) CBDB SET 3,B 
CBA7 RES 4,A CBD9 SET 3,C 
CBA8 RES 5,B CBDA SET 3,D 
CBA9 RES 5,C CBDB SET 3,E 
CBAA RES 5,D CBDC SET 3,H 
CBAB RES 5,E CBDD SET 3,L 
CBAC RES 5,H CBDE SET 3,(HL) 
CBAD RES 5,L CBDF SET 3,A 
CBAE RES 5,(HL) CBE0 SET 4,B 
CBAF RES 5,A CBE1 SET 4,C 
CBB0 RES 6,B CBE2 SET 4,D 
CBB1 RES 6,C CBE3 SET 4,E 
CBB2 RES 6,D CBE4 SET 4,H 
CBE3 RES 6,E CBE5 SET 4,L 
CBB4 RES 6,H CBE6 SET 4,(HL) 
CBB5 RES 6,L CBE7 SET 4,A 
CBB6 RES 6,(HL) CBEB SET 5,B 
CBB7 RES 6,A CBE9 SET 5,C 
CBB8 RES 7,B CBEA SET 5,D 
CBE9 RES 7,C CBEB SET 5,E 
CBBA RES 7,D CBEC SET 5,H 
CBBB RES 7,E CBED SET 5,L 
CBBC RES 7,H CBEE SET 5,(HL) 
CBBD RES 7,L CBEF SET 5,A 
CBBE RES 7,(HL) CBF0 SET 6,B 
CBBF RES 7,A CBF1 SET 6,C 
CBCB SET 0,B CBF2 SET 6,D 
CBC1 SET 0,C CBF3 SET 6,E 
CBC2 SET 0,D CBF4 SET 6,H 
CBC3 SET 0,E CBF5 SET 6,L 
CBC4 SET 0,H CBF6 SET 6,(HL) 
CBC5 SET 0,L CBF7 SET 6,A 
CBC6 SET 0,(HL) CBF8 SET 7,B 
CBC7 SET 0,A CBF9 SET 7,C 
CBC8 SET 1,B CBFA SET 7,D 
CBC9 SET 1,C CBFB SET 7,E 

176 



Numeric 	List of 

SOURCE 

Z-80 	Instructions PAGE 

SOURCE 
OBJECT CODE STATEMENT OBJECT CODE STATEMENT 
CBFC SET 	7,8 DDCB0546 BIT 	0,(IX+IND) 
CBFD SET 	7,L DDCB054E BIT 	1,(IX+IND) 
CBFE SET 	7, (HL) DDCB0556 BIT 	2,(IX+IND) 
CBFF SET 	7,A DDC13055E BIT 	3,(IX+IND) 
DD09 ADD 	IX,BC DDCB0566 BIT 	4,(IX+IND) 
DD19 ADD 	IX,DE DDCB056E BIT 	5,(IX+IND) 
DD218405 LD 	IX,NN DDCB0576 BIT 	6,(IX+IND) 
DD228405 LD 	(NN) ,IX DDCB057E BIT 	7,(IX+IND) 
DD23 INC 	IX DDCB0586 RES 	0,(IX+IND) 
DD29 ADD 	IX,IX DDCB058E RES 	1,(IX+IND) 
DD2A8405 LD 	IX,(NN) DDCB0596 RES 	2,(IX+IND) 
DD2B DEC 	IX DDCB059E RES 	3,(IX+IND) 
DD3405 INC 	(IX+IND) DDCB05A6 RES 	4,(IX+IND) 
DD3505 DEC 	(IX+IND) DDCB05AE RES 	5,(IX+IND) 
DD360520 LD 	(IX+IND) ,N DDCB05B6 RES 	6,(IX+IND) 
DD39 ADD 	IX, SP DDCB05BE RES 	7, (IX+IND) 
DD4605 LD 	B,(IX+IND) DDCB05C6 SET 	0,(IX+IND) 
DD4E05 LD 	C,(IX+IND) DDCB05CE SET 	1,(IX+IND) 
DD5605 LD 	D,(IX+IND) DDCB05D6 SET 	2,(IX+IND) 
DD5E05 LD 	E,(IX+IND) DDCBO5DE SET 	3,(IX+IND) 
DD6605 LD 	8,(IX+IND) DDCB05E6 SET 	4,(IX+IND) 
DD6E05 LD 	L,(IX+IND) DDCBOSEE SET 	5,(IX+IND) 
DD7005 LD 	(IX+IND),B DDCB05F6 SET 	6,(IX+IND) 
DD7105 LD 	(IX+IND),C DDCB05FE SET 	7,(IX+IND) 
DD7205 LD 	(IX+IND),D ED40 IN 	B, (C) 
DD7305 LD 	(IX+IND),E ED41 OUT 	(C) ,B 
DD7405 LD 	(IX+IND),H ED42 SBC 	HL, BC 
DD7505 LD 	(IX+IND),L ED438405 LD 	(NN) ,BC 
D07705 LD 	(IX+IND),A ED44 NEG 
DD7E05 LD 	A,(IX+IND) ED45 RETN 
DD8605 ADD 	A,(IX+IND) ED46 IM 	0 
DD8E05 ADC 	A,(IX+IND) ED47 LD 	I,A 
DD9605 SUB 	(IX+IND) ED48 IN 	C, (C) 
DD9E05 SBC 	A,(IX+IND) ED49 OUT 	(C) ,C 
DDA605 AND 	(IX+IND) ED4A ADC 	HL,BC 
DDAE05 XOR 	(IX+IND) ED4B8405 LD 	BC, (NN) 
DDB605 OR 	(IX+IND) ED4D RETI 
DDBE05 CP 	(IX+IND) ED4F LD 	R,A 
DDE1 POP 	IX ED50 IN 	D, (C) 
DDE3 EX 	(SP) ,IX ED51 OUT 	(C) ,D 
DDES PUSH 	IX ED52 SBC 	HL,DE 
DDE9 JP 	(IX) ED538405 LD 	(NN) ,DE 
DDF9 LD 	SP,IX ED56 IM 	1 
DDCB0506 RLC 	(IX+IND) ED57 LD 	A,I 
DDCB050E RRC 	(IX+IND) ED58 IN 	E,(C) 
DDCB0516 RL 	(IX+IND) ED59 OUT 	(C) ,E 
DDCB051E RR 	(IX+IND) EDSA ADC 	HL,DE 
DDCB0526 SLA 	(IX+IND) ED5B8405 LD 	DE,(NN) 
DDCB052E SRA 	(IX+IND) EDSE IM 	2 
DDCB053E SRL 	(IX+IND) ED5F LD 	A, R 
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ED60 IN 	H,(C) FD7305 LD 	 TrY+IND),E 
ED61 OUT 	(C) ,H FD7405 LD 	(IY+IND) ,H 
ED62 SBC 	HL,HL FD7505 LD 	(IY+IND),L 
ED67 RRD FD7705 LD 	(IY+IND),A 
ED68 IN 	L,(C) FD7E05 LD 	A,(IY+IND) 
ED69 OUT 	(C),L FD8605 ADD 	A,(IY+IND) 
ED6A ADC 	HL,HL FD8E05 ADC 	A,(IY+IND) 
ED6F RLD F09605 SUB 	(IY+IND) 
ED72 SEC 	HL,SP FD9E05 SBC 	A,(IY+IND) 
ED738405 LD 	(NN) ,SP FDA605 AND 	(IY+IND) 
ED78 IN 	A,(C) FDAE05 XOR 	(IY+IND) 
ED79 OUT 	(C) ,A FDB605 OR 	(IY+IND) 
ED7A ADC 	HL,SP FDBE05 CP 	(IY+IND) 
ED7B8405 LD 	SP,(NN) FDE1 POP 	IY 
EDAO LDI FDE3 EX 	(SP) ,IY 
EDA1 CPI FDE5 PUSH 	IY 
EDA2 INI FDE9 JP 	(IT) 
EDA3 OUTI FDF9 LD 	SP,FY 
E DA8 LDD FDCB0506 RLC 	(IY+IND) 
EDA9 CPD FDCB050E RRC 	(IY+IND) 
EDAA IND FDCB0516 RL 	(IY+IND) 
EDAB OUTD FDCB051E RR 	(IY+IND) 
EDBO LDIR FDCB0526 SLA 	(IY+IND) 
EDB1 CPIR FDCB052E SRA 	(IY+IND) 
EDB2 INIR FDCB053E SRL 	(IY+IND) 
EDB3 OTIR FDCB0546 BIT 	0,(IY+IND) 
EDB8 LDDR FDCB054E BIT 	1,(IY+IND) 
EDB9 CPDR FDCB0556 BIT 	2,(IY+IND) 
EDBA INDR FDCB055E BIT 	3,(IY+IND) 
EDBB OTDR FDCB0566 BIT 	4,(IY+IND) 
FD09 ADD 	IY,BC FDCB056E BIT 	5,(IY+IND) 
FD19 ADD 	IY,DE FDCB0576 BIT 	6,(IY+IND) 
FD218405 LD 	IY,NN FDCB057E BIT 	7,(IY+IND) 
FD228405 LD 	(NN),IY FDCB0586 RES 	0,(IY+IND) 
FD23 INC 	IY FDCB058E RES 	1„(IY+IND) 
FD29 ADD 	IT,IY FDCB0596 RES 	2,(IY+IND) 
FD2A8405 LD 	IY,(NN) FDCB059E RES 	3,(IY+IND) 
FD2B DEC 	IY FDCB05A6 RES 	4,(IY+IND) 
FD3405 INC 	(IY+IND) FDCB05AE RES 	5,(IY+IND) 
FD3505 DEC 	(IY+IND) FDCB05B6 RES 	6,(IY+IND) 
FD360520 LD 	(IY+IND) ,N FDCB05BE RES 	7,(IY+IND) 
FD39 ADD 	IY,SP FDCB05C6 SET 	0,(IY+IND) 
F04605 LD 	B,(IY+IND) FDCB05CE SET 	1,(IY+IND) 
FD4E05 LD 	C,(IY+IND) FDCB0506 SET 	2,(IY+IND) 
FD5605 LD 	D,(IY+IND) FDCBO5DE SET 	3,(IY+IND) 
FD5E05 LD 	E,(IY+IND) FDCB05E6 SET 	4,(IY+IND) 
FD6605 LD 	H,(IY+IND) FDCBOSEE SET 	5,(IY+IND) 
FD6E05 LD 	L,(IY+IND) FDCBOSF6 SET 	6,(IY+IND) 
FD7005 LD 	(IY+IND),B FDCBOSFE SET 	7,(IY+IND) 
FD7105 LD 	(IY+IND) ,C 
FD7205 LD 	(IY+IND),D 
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8E 	ADC A,(HL) 	DDCB0546 	BIT 0,(IX+IND) 
DD8E05 	ADC A,(IX+IND) FDCB0546 	BIT Or(IY+IND) 
FD8E05 	ADC A,(IY+IND) CB47 	BIT 0,A 
8F 	ADC A,A 	CB40 	BIT 0,B 
88 	ADC A,B 	CB41 	BIT 0,C 
89 	ADC A,C 	CB42 	BIT 0,D 
8A 	ADC A,D 	CB43 	BIT 0,E 
8B 	ADC A,E 	CB44 	BIT 0,H 
8C 	ADC A,H 	CB45 	BIT 0,L 
8D 	ADC A,L 	CB4E 	BIT 1,(HL) 
CE20 	ADC A,N 	DDCB054E 	BIT 1,(IX+IND) 
ED4A 	ADC HL,BC 	FDCB054E 	BIT 1,(IY+IND) 
ED5A 	ADC HL,DE 	CB4F 	BIT 1,A 
ED6A 	ADC HL,HL 	CB48 	BIT 1,B 
ED7A 	ADC HL,SP 	CB49 	BIT 1,C 
86 	ADD A,(HL) 	CB4A 	BIT 1,D 
D08605 	ADD A,(IX+IND) CB4B 	BIT 1,E 
F08605 	ADD A,(IY+IND) CB4C 	BIT 1,H 
87 	ADD A,A 	CB4D 	BIT 1,L 
80 	ADD A,B 	CB56 	BIT 2,(HL) 
81 	ADD A,C 	DDCB0556 	BIT 2,(IX+IND) 
82 	ADD A,D 	FDCB0556 	BIT 2,(IY+IND) 
83 	ADD A,E 	CB57 	BIT 2,A 
84 	ADD A,H 	CB50 	BIT 2,B 
85 	ADD A,L 	CB51 	BIT 2,C 
C620 	ADD A,N 	CB52 	BIT 2,0 
09 	ADD HL,BC 	CB53 	BIT 2,E 
19 	ADD HL,DE 	CB54 	BIT 2,H 
29 	ADD HL,HL 	CB55 	BIT 2,L 
39 	ADD HL,SP 	CB5E 	BIT 3,(HL) 
DD09 	ADD IX,BC 	DDCB055E 	BIT 3,(IX+IND) 
DDl9 	ADD IX,DE 	FDCB055E 	BIT 3,(IY+IND) 
DD29 	ADD IX,IX 	CB5F 	BIT 3,A 
DD39 	ADD IX,SP 	CB58 	BIT 3,B 
FD09 	ADD IY,BC 	CB59 	BIT 3,C 
FD19 	ADD IY,DE 	CB5A 	BIT 3,0 
FD29 	ADD IY,IY 	CB5B 	BIT 3,E 
FD39 	ADD IY,SP 	CBSC 	BIT 3,5 
A6 	AND (HL) 	CBSD 	BIT 3,L 
DDA605 	AND (IX+IND) CB66 	BIT 4,(HL) 
FDA605 	AND (IY+IND) DDCB0566 	BIT 4,(IX+IND) 
A7 	AND A 	FDCB0566 	BIT 4,(IY+IND) 
AO 	AND B 	CB67 	BIT 4,A 
Al 	AND C 	CB60 	BIT 4,B 
A2 	AND D 	CB61 	BIT 4,C 
A3 	AND E 	CB62 	BIT 4,D 
A4 	AND H 	CB63 	BIT 4,E 
A5 	AND L 	CB64 	BIT 4,H 
E620 	AND N 	CB65 	BIT 4,L 
CB46 	BIT 	0,(5L) 	CB6E 	BIT 	5,(HL) 
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ooCe056u 	BIT 5,(IX+INo) OD&9 	CPD 
roCa056C 	BIT 5,(IY+INo) Eoa9 	CpoB 
C86e 	BIT 5,A 	BDmI 	CPL 
CB68 	BIT 5,a 	Ooal 	CPI8 
Ca69 	BIT 5,C 	2F 	CPL 
Ca6A 	BIT 5,D 	27 	Dau 
CB6e 	BIT 5,E 	35 	DEC (8L) 
Ca6C 	BIT 5,8 	oo3505 	DEC (Ix+ImD) 
Co6o 	BIT 5,L 	FD3505 	DEC (IY+ImD) 
C376 	BIT 6,(uL} 	3D 	DEC & 
ooC80576 	BIT 6,(IX+Imo) 05 	DEC B 
roCa0576 	BIT 6,(IY+IND) 0a 	DEC BC 
C877 	BIT G,a 	0D 	DEC C 
C870 	BIT 6,a 	15 	DEC o 
Cs71 	BIT 6,C 	lo 	DEC DE 
C872 	BIT 5,o lo 	DEC 8 
Co73 	BIT 6,E 	25 	DEC 8 
Ca74 	BIT 6,D 	2B 	DEC 8L 
CB75 	BIT 6,L 	no2o 	DEC IX 
CB78 	BIT 7,(oL) 	Fo2n 	DEC Ty 
ooCm057m 	BIT 7,(IX+Imo) 2o 	DEC C 
cDCa0578 	BIT 7,(IY+Z0D) 3a 	DEC Se 
CB?r 	BIT ?,a 	F3 	DI 
Ca78 	BIT 7,o 	102B 	oJ0o oIS 
Ca79 	BIT 7,C 	Fa 	OI 
Ca7A 	8IT 7,o 	83 	EX (SP),8L 
Cu7u 	BIT 7,8 	000] 	8X (Se)/Ix 
CB?C BIT 7,B 	coE3 	DX (Sp),IY 
C137o 	BIT 7,L 	08 	OX aF,ax' 
uC8405 	CALL C,NN 	8a 	nx oB,8L 
FC8405 	CALL m,mm 	D9 	EXX 
o48405 	CALL NC,mm 	76 	HALT 
Co8405 	CALL NN 	uD46 	Im 0 
C48405 	CALL mz,0W 	8D56 	zm 	l 
F48405 	CALL g,Nm 	Eo5E 	zm 2 
8C8405 	CALL Po,0m 	Oo78 	IN a,(C) 
848405 	CALL pO / mm 	Da20 	IN n,m 
CC8405 	CALL x,m0 	uD40 	IN B'<C> 
3r 	oCF 	so48 	IN CI(C) 
8E 	Cg 	(HL) 	mo50 	IN 	o,(C) 
no8805 	CP (ZX+Imo) 	£o50 	IN E,(o) 
yD8E05 	CP (Iy+zmD) 	uD60 	IN 8^(C) 
BF 	CP & 8o68 	IN L,(C) 
BO 	CP e 	34 	INC (8L) 
B9 	CP C oo3405 	INC (IX+ImD) 
eu 	C9 o 	Fo3405 	INC (IY+Imn) 
BB 	CP E 	3C 	INC a 
BC CP 8 	04 	INC o 
BD 	CP c 	03 	INC BC 
rO20 CP m 	0C INC C 
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14 INC D FD7105 LD (IY+IND),C 
13 INC DE FD7205 LD (IY+IND),D 
1C INC E FD7305 LD (IY+IND),E 
24 INC H FD7405 LD (IY+IND),H 
23 INC HL FD7505 LD (IY+IND),L 
DD23 INC IX FD360520 LD (IY+IND),N 
FD23 INC IY 328405 LD (NN) ,A 
2C INC L ED438405 LD (NN) ,BC 
33 INC SP ED538405 LD (NN) ,DE 
EDAA IND 228405 LD (NN) ,HL 
EDBA INDR DD228405 LD (NN),IX 
EDA2 INI FD228405 LD (NN),IY 
EDB2 INIR ED738405 LD (NN) ,SP 
E9 JP (HL) 0A LD A,(BC) 
DDE9 4P (IX) lA LD A,(DE) 
FDE9 JP (IY) 7E LD A,(HL) 
DA8405 JP C,NN DD7E05 LD A,(IX+IND) 
FA8405 JP m,NN FD7E05 LD A,(IY+IND) 
D28405 JP NC,NN 3A8405 LD A,(NN) 
C38405 JP NN 7F LD A,A 
C28405 JP NZ,NN 78 LD A,B 
F28405 JP P,NN 79 LD A,C 
EA8405 JP PE,NN 7A LD A,D 
E28405 JP PO,NN 7B LD A,E 
CA8405 JP Z,NN 7C LD A,H 
382E JR DIS ED57 LD A,I 
302E JR NC,DIS 7D LD A,L 
202E JR NZ,DIS 3E20 LD A,N 
282E JR Z,DIS 46 LD B,(HL) 
02 LD (BC) ,A DD4605 LD B,(IX+IND) 
12 LD (DE) ,A FD4605 LD B,(IY+IND) 
77 LD (HL) ,A 47 LD B,A 
70 LD (HL) ,B 40 LD B,B 
71 LD (HL) ,C 41 LD B,C 
72 LD (HL) ,D 42 LD 8,0 
73 LD (HL) ,E 43 LD B,E 
74 LD (HL) ,H 44 LD D,H 
75 LD (HL) ,L 45 LD D,L 
3620 LD (HL) ,N 0620 LD B,N 
007705 LD (IX+IND) ,A ED4B8405 LD BC,(NN) 
DD7005 LD (IX+IND) ,B 018405 LD BC,NN 
DD7105 LD (IX+IND) ,C 4E LD C,(HL) 
DD7205 LD (IX+IND) ,D DD4E05 LD C,(IX+IND) 
DD7305 LD (IX+IND) ,E FD4E05 LD C,(IY+IND) 
007405 LD (IX+IND) .11 4F LD C,A 
007505 LD (IX+IND) ,L 48 LD C,B 
D0360520 LD (IX+IND) ,N 49 LD C,C 
FD7705 LD (IY+IND) ,A 4A LD C,D 
F07005 LD (IY+IND) ,B 48 LD C,E 
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4D LD C,L 6A LD L,D 
0E20 LD C,N 6B LD L,E 
56 LD Dr(HL) 6C LD L,H 
DD5605 LD D,(IX+IND) 6D LD L,L 
FD5605 LD D,(IY+IND) 2E20 LD L,N 
57 LD D,A ED788405 LD SP,(NN) 
50 LD D,B F9 LD SP,HL 
51 LD D,C DDF9 LD SP,IX 
52 LD D,D FDF9 LD SP,IY 
53 LD D,E 318405 LD SP,NN 
54 LD D,H EDA8 LDD 
55 LD D,L EDB8 LDDR 
1620 LD D,N EDAO LDI 
ED5B8405 LD DE,(NN) EDBO LDIR 
118405 LD DE,NN ED44 NEG 
5E LD E,(HL) 00 NOP 
DD5E05 LD E,(IX+IND) B6 OR (HL) 
FD5E05 LD E,(IY+IND) DDB605 OR (IX+IND) 
5F LD E,A FDB605 OR (IY+IND) 
58 LD E,B B7 OR A 
59 LD E,C BO OR B 
5A LD E,D BI OR C 
5B LD E,E 02 OR D 
5C LD E,H B3 OR E 
5D LD E,L B4 OR H 
1E20 LD E,N 05 OR L 
66 LD Hr (HL) F620 OR N 
DD6605 LD H,(IX+IND) EDBB OTDR 
FD6605 LD ti,(IY+IND) EDB3 OTIR 
67 LD H,A ED79 OUT (C),A 
60 LD H,B ED41 OUT (C),B 
61 LD H,C ED49 OUT (C),C 
62 LD H,D ED51 OUT (C),D 
63 LD H,E ED59 OUT (C),E 
64 LD H,H ED61 OUT (C),H 
65 LD H,L ED69 OUT (C),L 
2620 LD H,N D320 OUT N,A 
2A8405 LD HL,(NN) EDAB OUTD 
218405 LD HL,NN EDA3 OUTI 
ED47 LD I,A Fl POP AF 
DD2A8405 LD IX,(NN) Cl POP BC 
DD218405 LD IX,NN D1 POP DE 
FD2A8405 LD IY,(NN) El POP HL 
FD218405 LD IY,NN DDE1 POP IX 
6E LD L,(HL) FDE1 POP TY 
DD6E05 LD L,(IX+IND) F5 PUSH AF 
FD6E05 LD L,(IY+IND) C5 PUSH BC 
6F LD L,A D5 PUSH DE 
68 LD L,B E5 PUSH HL 
69 LD L,C DDES PUSH IX 
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FDE5 PUSH 	IY CBAS RES 	4,L 
CB86 RES 	0,(HL) CBAE RES 	5,(HL) 
DDCB0586 RES 	0,(IX+IND) DDCB05AE RES 	5,(IX+IND) 
FDCB0596 RES 	0,(IY+IND) FDCB05AE RES 	5,(IY+IND) 
CB87 RES 	0,A CBAF RES 	5,A 
CB80 RES 	0,B CBA8 RES 	5,B 
CB81 RES 	0,C CBA9 RES 	5,C 
CB82 RES 	0,D CBAA RES 	5,D 
CB83 RES 	0,E CBAB RES 	5,E 
CB84 RES 	0,H CBAC RES 	5,H 
CB85 RES 	0,L CBAD RES 	5,L 
CB8E RES 	1, (HL) CBB6 RES 	6,(HL) 
DDCB058E RES 	1,(IX+IND) DDCB0586 RES 	6,(IX+IND) 
FDCB058E RES 	1,(IY+IND) FDCB05B6 RES 	6,(IY+IND) 
CB8F RES 	1,A CBB7 RES 	6,A 
CB88 RES 	1,8 CBBO RES 	6,B 
CB89 RES 	1,C CBB1 RES 	6,C 
CB8A RES 	1,D CBB2 RES 	6,D 
CB8B RES 	1,E 0883 RES 	6,E 
CB8C RES 	1,8 CBB4 RES 	6,H 
CB8D RES 	1,L CBBS RES 	6,L 
C896 RES 	2, (HL) CBBE RES 	7,(HL) 
DDCB0596 RES 	2,(IX+IND) DDCB05BE RES 	7,(IX+IND) 
FDCB0596 RES 	2,(IY+IND) FDCB05BE RES 	7,(IY+IND) 
C897 RES 	2,A CBBF RES 	7,A 
C890 RES 	2,8 CBB8 RES 	7,B 
C891 RES 	2,C CBB9 RES 	7,C 
CB92 RES 	2,D CBBA RES 	7,D 
CB93 RES 	2,E CBBB RES 	7,E 
C894 RES 	2,H CBBC RES 	7,H 
CB95 RES 	2,L CBBD RES 	7,L 
CB9E RES 	3, (HL) C9 RET 
DDCB059E RES 	3,(IX+IND) D8 RET 	C 
FDCB059E RES 	3,(IY+IND) F8 RET 	M 
CB9F RES 	3,A DO RET 	NC 
CB98 RES 	3,B CO RET 	NZ 
CB99 RES 	3,C FO RET 	P 
CB9A RES 	3,D E8 RET 	PE 
CB9B RES 	3,E EO RET 	PO 
CB9C RES 	3,H C8 RET 	Z 
CB9D RES 	3,L ED4D RETI 
CBA6 RES 	4, (HL) ED45 RETN 
DDCB05A6 RES 	4,(IX+IND) CB16 RL 	(HL) 
FDCB05A6 RES 	4,(IY+IND) DDCB0516 RL 	(IX+IND) 
CBA7 RES 	4,A FDCB0516 RL 	(IY+IND) 
CBAO RES 	4,8 CB17 RL 	A 
CBA1 RES 	4,C CB10 RL 
CBA2 RES 	4,D CB11 RL 
CBA3 RES 	4,E CB12 RL 
CBA4 RES 	4,H C813 RL 
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C814 RL 98 SBC 	A,B 
CB15 RL 99 SBC 	A,C 
17 R LA 9A SBC 	A,D 
C806 RLC 	(HL) 98 SBC 	A,E 
DDCB0506 RLC 	(IX+IND) 9C SBC 	A,H 
FDCB0506 RLC 	(IY+IND) 9D SBC 	A,L 
C807 RLC 	A DE20 SBC 	A,N 
C800 RLC 	B ED42 SBC 	HL, BC 
C801 RLC 	C ED52 SBC 	HL,DE 
C802 RLC 	D ED62 SBC 	HL,HL 
C803 RLC 	E ED72 SBC 	HL, SP 
C804 RLC 	H 37 SCF 
C805 RLC 	L CBC6 SET 	0, (HL) 
07 RLCA DDCB05C6 SET 	0,(IX+IND) 
ED6F R LD FDCB05C6 SET 0,(IY+IND) 
CB1E RR 	(HL) CBC7 SET 0,A 
DDCB051E RR 	(IX+IND) CBCO SET 0,B 
FDCB051E RR 	(IY+IND) CBC1 SET 0,C 
CB1F RR 	A CBC2 SET 0,D 
CB18 RR CBC3 SET 	0,E 
CB19 RR CBC4 SET 	0,H 
CB1A RR CBC5 SET 	0,L 
CB1B RR CBCE SET 	1, (HL) 
CB1C RR DDCB05CE SET 	1,(IX+IND) 
CB1D RR FDCB05CE SET 	1,(IY+IND) 
1F RRA CBCF SET 1,A 
CBOE RRC 	(HL) CBC8 SET 1,B 
DDC8050E RRC 	(IX+IND) CBC9 SET 1,C 
FDCB050E RRC 	(IY+IND) CBCA SET 1,D 
CBOF RRC 	A CBCB SET 1,E 
C808 RRC 	B CBCC SET 1,H 
C809 RRC 	C CBCD SET 1,L 
CBOA RRC 	D CBD6 SET 2, (HL) 
C8OB RRC 	E DDCB0506 SET 2,(IX+IND) 
CBOC RRC 	H FDCBO5D6 SET 2,(IY+ID) 
CBOD RRC 	L CBD7 SET 2,A 
OF RRCA CBDO SET 2,B 
ED67 RRD CBD1 SET 2,C 
C7 RST 	0 CBD2 SET 2,D 
CF RST 	08H CBD3 SET 2,E 
D7 RST 	10H CBD4 SET 	2,H 
DF RST 	18H CBD5 SET 	2,L 
E7 RST 	20H CBDE SET 	3, (HL) 
EF RST 	28H DDCBO5DE SET 	3,(IX+IND) 
F7 RST 	30H FDCBO5DE SET 	3,(IY+IND) 
FF RST 	38H CBDF SET 	3,A 
9E SBC 	A,(HL) CBD8 SET 	3,B 
DD9E05 SBC 	A,(IX+IND) CBD9 SET 	3,C 
FD9E05 SBC 	A,(IY+IND) CBDA SET 	3,D 
9F SBC 	A,A CBDB SET 	3,E 
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C BDC SET 	3,H CB24 SLA 	H 
CBDD SET 	3,L CB25 SLA 	L 
CBE6 SET 	4,(HL) CB2E SRA 	(HL) 
DDCB05E6 SET 	4,(IX+IND) DDCB052E SRA 	(IX+IND) 
FDCB05E6 SET 	4,(IY+IND) FDCB052E SRA 	(IY+IND) 
CBE7 SET 	4,A CB2F SRA 	A 
CBEO SET 	4,B CB28 SRA 	B 
CBE1 SET 	4,C CB29 SRA 	C 
CBE2 SET 	4,D CB2A SRA 	D 
CBE3 SET 	4,E CB2B SRA 	E 
CBE4 SET 	4,H CB2C SRA 	H 
CBES SET 	4,L CB2D SRA 	L 
CBEE SET 	5,(HL) CB3E SRL 	(HL) 
DDCBOHE SET 	5,(IX+IND) DDCB053E SRL 	(IX+IND) 
FDCBOHE SET 	5,(IY+IND) FDCB053E SRL 	(IY+IND) 
CBEF SET 	5,A CB3F SRL 	A 
CBE8 SET 	5,B CB38 SRL 	B 
CBE9 SET 	5,C CB39 SRL 	C 
CBEA SET 	5,D CB3A SRL 	D 
CBEB SET 	5,E CB3B SRL 	E 
CBEC SET 	5,H CB3C SRL 	H 
CBED SET 	5,L CB3D SRL 	L 
CBF6 SET 	6,(HL) 96 SUB 	(HL) 
DDCBO5F6 SET 	6,(IX+IND) D09605 SUB 	(IX+IND) 
FDCB05F6 SET 	6,(IY+IND) F09605 SUB 	(IY+IND) 
CBF7 SET 	6,A 97 SUB 	A 
CBFO SET 	6,B 90 SUB 	B 
CBF1 SET 	6,C 91 SUB 	C 
CBF2 SET 	6,D 92 SUB 	D 
CBF3 SET 	6,E 93 SUB 	E 
CBF4 SET 	6,H 94 SUB 	H 
CBF5 SET 	6,L 95 SUB 	L 
CBFE SET 	7,(HL) D620 SUB 	N 
DDCBOSFE SET 	7,(IX+IND) AE XOR 	(HL) 
FDCB05FE SET 	7,(IY+IND) DDAE05 XOR 	(IX+IND) 
CBFF SET 	7,A FDAE05 XOR 	(IY+IND) 
CBF8 SET 	7,B AF XOR 	A 
CBF9 SET 	7,C A8 XOR 	B 
CBFA SET 	7,D A9 XOR 	C 
CBFB SET 	7,E AA XOR 	D 
CBFC SET 	7,H AB XOR 	E 
CBFD SET 	7,L AC XOR 	H 
CB26 SLA 	(HL) AD XOR 	L 
DDCB0526 SLA 	(IX+IND) EE20 XOR 	N 
FDCB0526 SLA 	(IY+IND) 
CB27 SLA 	A 
CB20 SLA 	B 
CB21 SLA 	C 
CB22 SLA 	D 
CB23 SLA 	E 
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PERSONAL COMPUTERS 

TRS-80 
Assembly 
Language 
Hubert S.Howek. 

Now for both the first-time user as well as expe-
rienced users of the TRS-80 microcomputer, here is a 
book that explains assembly language programming 
in a thorough, yet easy-to-understand style. TRS-80 
Assembly Language contains all of the information 
you need in order to develop machine language 
programs.  

In this book you will find: 
clear presentations of all introductory concepts 

in the use of the TRS-80 
completely tested practical programs and subroutine$ 

details of ROM, RAM, and disk operating systems 
comprehensive tables, charts, and appendices 

and much more! 

TRS-80 Assembly Language incorporates into a 
single volume all the pertinent facts and information 
you need to know to program and enjoy the TRS-80 
microcomputer. 

Hubert S. Howe, Jr., is an Associate Professor at 
Queens College of the City University of New York. He 
specializes in the subject of electronic music.  

Prentice-Hall, Inc. 
Englewood Cliffs, New Jersey 07632 

0-13-931121 1 
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