
Assembly
language

INTRODUCTORY CONCEPTS
PRACTICAL PROGRAMMING APPLICATIONS

DETAILS OF ROM & RAM USAGE
DISK PROGRAMMING

Hubert S.HcnAre3z
A SPECTRUM BOOK Al% S-810 $9.95

TRS SO
ASSEMBLY LANGUAGE

HUBERT S. HOWE, JR.

iact
A SPECTRUM BOOK

Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication DATA

HOWE, HUBERT S

TRS-80 assembly language.

(A Spectrum Book)

Bibliography: p 186
I. TRS-80 (Computer)—Programming 2. Assembler

language (Computer program language) I. Title.

QA76 8 T18H68 001.64'2 80-20578

ISBN 0-13-931139-4
ISBN 0-13-931121-1 (pbk.)

To Stefanie

© 1981 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

A SPECTRUM BOOK

All rights reserved. No part of this book may be reproduced in any form or by any means without
permission in writing from the publisher.

10 9 8 7 6 5

Printed in The United States of America

Editorial/production supervision by Frank Moorman
Interior design by Dawn Stanley
Manufacturing buyer: Cathie Lenard

This book was composed using a Diablo HyType I printer with Michael Shrayer's Electric Pencil
program on a TRS-80 Model I Microcomputer.

PRENTICE-HALL INTERNATIONAL, INC., London
PRE.NTICE-HALL OF AUSTRAL. IA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OE JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTE, LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

1. Machine

TABLE OF CONTENTS

Part I: 	Basic Concepts

Language 	 1
1.1 What is Machine Language, 1
1.2 Basic Components of the Computer 	 3
1.3 The Memory of the TRS-80 	 3
1.4 Binary and Hexadecimal Numbers 	 5
1.5 ASCII 	 6
1.6 Number Formats in Basic 	 7
1.7 Analyzing Memory 	 8

2. The Architecture of the Z-80 CPU 	 9
2.1 Registers 	 9
2.2 Instruction Mnemonics and Operands 	 11
2.3 Uses of the Registers 	 12
2.4 Flags 	- 14
2.5 Addressing Modes 	 15
2.6 Instruction Timing 	 16

3. Overview of the Z-80 	Instruction Set 	 18
3.1 Eight-Bit Load Group 	 21
3.2 Sixteen-Bit Load Group 	 21
3.3 Exchange and Block Transfer and Search

Group 	 22
3.4 Eight-Bit Arithmetic and Logical Group 	 23
3.5 General Purpose Arithmetic and CPU Control

Groups 	 25
3.6 16-Bit Arithmetic Group 	 26
3.7 Rotate and Shift Group 	 26
3.8 Bit. Set, 	Reset, 	and Test Group 	 28
3.9 Jump Group 	 28
3.10 Call and Return Group 	 29
3.11 Input and Output Group 	 30

4. The Stack and its Applications 	 32
4.1 The Stack Area and Stack Pointer 	 32
4.2 PUSH and POP Instructions 	 33
4.3 Call and Return Instructions 	 33
4.4 Restart Instructions 	 34
4.5 Miscellaneous Stack Instructions 	 34
4.6 Subroutines 	 35

5. memory Map 	 39
5.1 	The Level 	II Basic ROM 	 40
5.2 Keyboard Subroutines 	 41
5.3 Video Display Subroutines 	 41
5.4 Cassette Subroutines 	 42
5.5 Miscellaneous I/O Subroutines 	 42
5.6 RST Vectors 	 43

5.7 Level II Basic Commands 	 44
5.8 Dedicated I/O Addresses 	 45
5.9 Keyboard Addressing 	 46
5.10 Video Display Memory 	 47
5.11 The RAM 	 47

6. Using the Editor/Assembler program 	51
6.1 Editor/Assembler Commands 	54
6.2 Writing a Program 	 55

Part II: Practical Programming

7. Reading and Printing Numbers 	 61
7.1 Printing a Number in Hexadecimal Form 	62
7.2 Printing a Number in Decimal Form 	65
7.3 Inputting a Number in Hexadecimal Form 	66
7.4 A Sample Program 	 67

8. Organizing Arrays and Tables 	 69
8.1 Arrays 	 69
8.2 ASCII Tables 	 70
8.3 Command Tables 	 74

9. Moving Data 	 76
9.1 	Moving Blocks 	 76
9.2 Filling Blocks 	 79
9.3 Searching Through Blocks 	81

10. Arithmetic Operations with Integers 	83
10.1 8-Bit Addition 	 84
10.2 Negative Numbers; Two's-Complement

Notation 	 85
10.3 8-Bit Subtraction 	 86
10.4 Multiple-Precision Addition and

Subtraction 	 88
10.5 Compare Operations 	 90
10.6 16-Bit Instructions 	 91
10.7 INC and DEC 	 92

11. Floating-Point and BCD Numbers 	 94
11.1 Floating-Point Numbers 	 94
11.2 Binary-Coded-Decimal Numbers 	97

12. Logical and Bit Operations........... 	 100
12.1 Logical Operations 	 100
12.2 Bit Operations 	 102
12.3 Rotate and Shift Instructions 	102
12.4 Bit Set, Reset, and Test Operations 	105
12.5 BCD Operations 	 105

preface

This book has grown out of a series of columns that. I have
been writing for over a year in the TRS-80 MONTHLY NEWS
MAGAZINE (originally called the TRS-80 MONTHLY NEWSLETTER),
published by H & E Computronics. Although the columns began
as an attempt to explain various aspects of assembly-language
programming to beginners, it gradually became clear to me that
the incorporation of this material into a single volume would
be more attractive and useful for most readers.

Both beginners and experienced programmers have good reason
to be dissatisfied with the material on assembly•-language
programming that has appeared thus far. Most of it is lacking
in some of the essential details that you need to know in
order to understand and to use the TRS-80, and much of this
literature is very poorly written. 	While there are some
aspects of the TRS-80 that are still not covered in this book,
such as details about the Level II Basic interpreter, it
contains most of the information that you need to know in
order to develop assembly-language programs, and the book
itself presents numerous practical programs and subroutines
that have been fully tested. It also includes many of those
"secrets" of the ROM and the Disk Operating Systems that you
need to know in order to comprehend fully what goes on inside
the TRS-80.

I would like to express my gratitude to several people who
have helped in the realization of this book: 	to Howard
Gosman, publisher of the TRS-80 MONTHLY NEWS MAGAZINE, where
the columns first appeared; to John Harding, who provided the
encouragement needed to develop the columns into a book.
Thanks also go to Emory Cook, who gave me many helpful
suggestions. 	I am also grateful to the numerous readers who
have provided both criticism and ideas for further pursuit.

Hubert S. Howe, Jr.
New City, New York

13. Software Multiplication and Division 	107
13.1 8-Bit Multiplication 	 108
13.2 16-Bit Multiplication 	 111
13.3 8-Bit Division 	 114
13.4 16-Bit Division 	 116

14. Cassette Input and Output 	 118
14.1 Cassette ROM Subroutines 	119
14.2 Tape Formats 	 120
14.3 Programming Cassette Input and Output 	123

15. USR Subroutines in Basic Programs 	128
15.1 USR Subroutines 	 128
15.2 Sorting a Series of Integers 	130
15.3 Alphabetizing a Series of Strings 	132

16. Disk Input and Output 	 135
16.1 Disk Basics 	 135
16.2 The Disk Operating System 	136
16.3 The Disk Controller 	 138
16.4 Disk Operations 	 140
16.5 Disk Input/Output Subroutines 	142
16.6 TRSDOS Input/Output Subroutines 	144

17. Disk Files 	 146
17.1 The Disk Directory 	 146
17.2 The "GAT" Sector 	 147
17.3 The "HIT" Sector 	 148
17.4 File Primary Directory Entries 	149
17.5 File Extension Directory Entries 	151
17.6 Passwords and Hash Codes 	152
17.7 File Structures and Types 	154

APPENDIX A: Zilog Tables of Z-80 Instructions 	158

APPENDIX B: ASCII/Hexadecimal Conversion Table 	170

APPENDIX C: Numeric List of Z-80 Instructions 	172

APPENDIX D: Alphabetic List of Z-80 Instructions 	179

APPENDIX E: Selected Bibliography 	 186

Li

1.1 What is Machine Language?

This is a book that has been written in order to explain
machine language or assembly-language programming for the
TRS-80 microcomputer to beginners. It is assumed that you
have some familiarity with Level II Basic, and that you will
have access to a TRS-80 with at least 16K memory and Level II
Basic in order to try out programming ideas and examples of
machine code introduced in different chapters.

If you are familiar with Basic, you are probably aware that
the instructions you write in a Basic program are not the same
as what the machine actually executes. Your statements are
decoded in a rather complicated way, and instructions that
carry out the actions you have directed the machine to perform
are executed for you. Basic itself is a program called an
"interpreter" that is written in the machine language of the
Z-80 microprocessor, which is the heart of the TRS-80.
"machine language" refers to a program, like Basic, that is
actively running inside a computer. 	"Assembly language"
refers to another program that you run called an "assembler"
that takes individual instructions written in symbolic form
and converts them into machine language.

All computers execute machine language and ONLY machine
language. 	Any other way of interacting with the computer
merely involves providing data to a program running in the

1

MACHINE LANGUAGE 	PAGE 2

machine. 	You may never be aware of what the language is, and
for many situations it would make no difference. In general,
the higher the level of the language being employed by the
computer, the further removed it is from the machine language.
The problem with this process is that it takes longer and
longer for the computer to execute each basic operation you
specify. 	The execution of one line in a Basic program may
require millions or even billions of machine operations.

When you write a program in assembly language, you are
taking advantage of the computer's internal structure so that
what you write can be executed much more efficiently than
instructions in symbolic languages. Execution efficiency is
not the only advantage, however. It is also true that what
the program can do may often be more extensive or elegant than
what programs in higher-level languages can do.

The disadvantage of machine language programming is that
you have to understand the structure of the computer in detail
to get it to work for you. A single error can cause an entire
program that works in every other respect not just to
malfunction, but to do disastrous things like erase itself
from memory. 	Machine-language programming can be messy,
requiring that you remember what is happening within every
single register of the CPU and other things that you would not
ordinarily think about. But it can be very rewarding, both in
terms of performing useful tasks efficiently and in terms of
the understanding and insight you can gain into the machine
through writing a successful program.

In this book, in addition to assuming that you have at
least a 16K Level II TRS'-80 computer, we will also assume that
you have Radio Shack's Editor/Assembler program (catalog
number 26-2002), or an equivalent assembler such as Apparat's
EDTASM that comes with NEWDOS+. The Editor/Assembler program
will enable you to assemble programming code discussed in the
book by yourself. If you don't have an assembler, in many
cases you can still POKE program code into memory, or you
might even get by with a machine language monitor program
(such as my own Monitors #3 or #4). These allow you to enter
values into memory one byte at a time. 	In any event, the
content of this book will become clear to you much faster if
you can try out the examples given by assembling them on your
own computer.

To understand machine language, it is essential that you
understand the Z-80 microprocessor and the memory of the
TRS-80. The Z-80 is the microprocessor around which the
TRS-80 is built. Manufactured by Zilog, Inc., it is one of a
number of popular microprocessors including the 8080 and the

MACHINE LANGUAGE 	PAGE 3

8008, both manufactured by Intel. The Z-80 does everything
that they do and more.

1.2 Basic Components of the Computer

Every computer consists of three basic components: 	the
CENTRAL PROCESSING UNIT, abbreviated CPU, which for the TRS-80
is the Z-80 microprocessor; a MEMORY, usually indicated as
some quantity of "K", where K equals 1024; and INPUT-OUTPUT
DEVICES, by which the computer communicates with the outside
world and vice-versa. You are no doubt familiar with most of
the input-output devices of the TRS-80, and if you don't have
all of them, you have surely seen them in Radio Shack
brochures or in stores. Everyone who has a TRS-80 has a video
monitor, keyboard, and cassette recorder. The video monitor
is an output device that actually displays a small portion of
memory. 	The keyboard, which you use to feed data into the
machine, is an input device. The cassette is used both for
input and for output. 	Other devices include floppy disk
drives, printers, and a variety of specialized equipment such
as the RS-232 interface and voice synthesizer.

1.3 The Memory of the TRS-80

The memory of the TRS-80 is contained in both the keyboard
case and the expansion interface. You are no doubt aware that
memory is not free, and so the amount of memory you have
depends on how much you have purchased. 	The basic unit of
memory in the TRS-80 is the BYTE, a number consisting of 8
bits or binary digits. A byte is capable of storing values
only between 0 and 255; all larger numbers must therefore be
contained in multiples of bytes. The largest value that can
be contained in a two-byte number is 65,535, and this number
is exactly the amount of memory that can be attached to the
Z-80 microprocessor. Each memory location is designated by a
two-byte number called its ADDRESS. Since the zero value is
used to indicate the first location, there are a total of
65,536 locations. In computer jargon, "K" indicates 1024 (2
to the tenth power) rather than 1000. Thus, the TRS-80 can
address a total of 64K bytes.

There are three different kinds of memory used in the
TRS-80. First is the ROM or "read-only memory". Values can be
read out of ROM but not written into it, to prevent accidental
data destruction. ROM contains the Basic interpreter, which
is always there as soon as you power up the computer. When
you write a Basic program, it is actually data used by the ROM
program. 	The LOWER 12K bytes of memory are reserved for ROM.
0 to 4095 (4K) is used for Level I, and 0 to 12,287 	(12K) 	is
used for Level II.

MACHINE LANGUAGE 	PAGE 4

The second kind of memory used by the TRS-80 is RAM or
"random access memory". 	Numbers can be read or written in
RAM. RAM is used for your programs and data, but not all of
it is available to you. With a Level II computer, the first
822 locations are used by the system for a number of special
purposes that will be explained in detail in chapter 5. (With
Disk Basic, the first 10K of RAM is used!) 	The TRS-80 uses
only the upper 48K locations, 16,384 through 65,535, for RAM.
This is why the maximum RAM you can purchase is 48K. 	If you
have 4K RAM, it is located at 16,384 through 20,479; 16K runs
through 32,767, and 32K through 49,152.

That still leaves 4K. The area between 12,288 and 16,383
is used for MEMORY-MAPPED input-output devices. The upper 1K
(15,360 through 16,383) is used for the video display. What
you see on the video display is actually what' is stored in
this portion of memory. 14,336 through 14,464 is used for the
keyboard. The rest of this region is reserved for other
purposes, and only a few locations have actually been
implemented at this time.

The fact that the video display is memory-mapped means that
anything you put into these locations is immediately sent to
the display. You can try running the following Level II Basic
program to test this out:

10 INPUT A
20 CLS
30 FOR 1=15360 TO 16383
40 POKE I,A
50 NEXT I
60 GOTO 10

"A" must be a value between 0 and 255 (the maximum value that
can be contained in a byte). Then look at Appendix C of the
LEVEL II BASIC REFERENCE MANUAL (Control, Graphics, and ASCII
codes). You will find that the number you input corresponds
to the code that is printed across the entire screen; but
when the program finishes, the question mark asking you to
input a new value is still at the upper left corner. Why?

The reason is that you have not issued a "PRINT" statement,
and have thus just bombed the video memory. Now you can see
that the PRINT statement in Basic actually does much more than
just print characters on the screen. It keeps track of where
the cursor is located, and when you come to the bottom of the
screen, it automatically scrolls everything up to the next
line, with the material at the top of the screen disappearing.
In addition, it responds to a number of special characters
called "control codes", which cause it to do such things as
home the cursor, clear the screen, clear to the end of the

MACHINE LANGUAGE 	PAGE 5

line, backspace, and so forth. If you had to work all this
out every time you printed something, it would be a mess, and
in this case you would also be duplicating a feature already
implemented in the TRS-80's ROM. But now that you understand
that this is all there is to it, you may not be afraid of
working out your own display routine, if you have a reason to
do things differently from the way they are handled in the
ROM.

1.4 Binary and Hexadecimal Numbers

The basic unit of TRS-80's memory is the byte. The value
contained in a specific byte, or the address where the byte is
located, can be denoted in three different ways: 	as a
DECIMAL, BINARY, or HEXADECIMAL number. We are most familiar
with the decimal or base 10 number system, and that is the
code that Radio Shack has used in the LEVEL II BASIC REFERENCE
MANUAL. 	There is one important difference between the use of
these numbers in Basic and our ordinary use of them: 	in
Basic, the comma is used as a separator. Thus, if we write
"16,383" in a Basic program, it would actually indicate two
numbers, 16 and 383. To indicate this quantity as one number,
we must write "16383". 	To avoid this confusion, we will
henceforth always write out five-digit or longer decimal
numbers without commas.

In a decimal number, each digit represents a value
multiplied by a power of 10. 	For example, the number 934
equals 9 times 100 plus 3 times 10 plus 4 times 1. In other
number systems, the same relationship exists, except the
digits represent powers of the base number. The digits of
binary numbers represent powers of 2. In the binary number
system, each binary digit or "bit" can indicate only a value
of 0 or 1. Binary numbers require a great many digits to be
written out. 	For example, 100000 binary equals 32 decimal.
Binary numbers are nevertheless important because they
indicate the way numbers are actually represented inside the
computer.

Because of the length of binary numbers, programmers have
adopted the hexadecimal or base 16 number system. Since 16 is
a power of 2 (the fourth), there is a direct relationship
between binary and hexadecimal numbers: 	each hexadecimal
digit indicates a 4-bit quantity. The value contained in any
byte can be expressed in exactly two hexadecimal digits. 	In
the hexadecimal system, each digit can express a value between
0 and 15. The numerals 0 - 9 are used for those values, while
the letters A - F are used for 10 - 15. It may be awkward to
think of something like "FE" as a number, but it is much

MACHINE LANGUAGE 	PAGE 6

easier to convert this number into binary form than the
equivalent decimal number 254.

To clarify the confusion resulting from the use of
different number systems, a letter or subscript is sometimes
appended to the number to indicate the number system. "B"
indicates binary and "H" hexadecimal, and the absence of any
letter indicates decimal. For example, both 100000B and 20H
indicate 32. In this book, the H subscript will normally be
appended to hexadecimal numbers unless it is supremely clear
from the context that the discussion involves only hexadecimal
numbers. This is a helpful convention because it is also used
by the TRS-80 Editor/Assembler.

(Programmers also sometimes employ another number system,
the octal or base 8 system. It is similar to hexadecimal in
that 8 is a power of 2 and each digit expresses a 3-bit
quantity, and in some cases easier to recognize because only
the numerals 0 - 7 are used. Octal is not used often with
byte-addressing computers, and we will not use it in this
book.)

1.5 ASCII

Everything inside the computer is indicated as a number. It
is what the number represents that determines the difference
between one thing and another. 	Numbers may represent
instructions to the computer to perform specific actions (a
program), values used in calculations (data), or characters to
be printed (ASCII code).

ASCII stands for "American Standard Code for Information
Interchange". Formulated many years ago and now implemented
in billions of dollars' worth of electronic equipment, it is
the method by which all of the characters are represented
numerically, whether entered from the keyboard or printed on
the video display. Although ASCII is only a 7-bit code, 8-bit
bytes are always used to hold the ASCII values within the
TRS-80. Appendix C of the LEVEL II BASIC REFERENCE MANUAL
lists the correspondences between the characters displayed and
the numerical values. 	For example, 32 indicates a blank
space, and 65 is the letter capital-A. Although the TRS-80
can display only upper-case letters on its video monitor, it
can input lower-case letters from the keyboard and hold them
in memory. Lower-case letters are produced by holding down
the shift key as you type a letter -- the reverse of a
typewriter keyboard -- but you cannot know that they are
lower-case letters because they are displayed as upper-case
letters. Furthermore, if you type in a Basic program in lower
case, it will be converted to upper case (although data values

MACHINE LANGUAGE 	PAGE 7

used by Basic programs are not converted). The only
discrepancy is with the "@" key. "PRINT @" used with a "shift
@" will not work.

The important point about upper and lower case is that the
TRS-80 is fully capable of COMPUTING with lower-case letters;
it merely can't DISPLAY them. 	As this is being written,
several companies are offering lower-case modifications, and
Radio Shack itself has just released its own lower-case
modification which unfortunately is incompatible with both the
other methods and software written for them.

The 7-bit ASCII code has room for 128 values, but not all
of these are used for displayable characters. The first 32
values (0-31) are used for control codes, not all of which are
implemented on the TRS-80. Since the 7-bit values are always
kept in 8-bit bytes, that leaves room for 128 more values for
other purposes, and these values (128-255) are used for space-
compression codes, tab codes, and graphics.

1.6 Number Formats in Basic

Although numerical values used in computer calculations appear
to be the most straightforward kind of data, they are somewhat
more complicated because most values require several bytes.
Level II Basic has three kinds of numerical variables:
integers, single-, and double-precision floating-point
numbers. The simplest numbers are integers, which are held in
two bytes or 16 bits. Because the first bit is used for the
sign (plus is zero and minus is one), the maximum value of an
integer is 32767. There is one funny thing about 2-byte
integers, which is also true of all 2-byte values in the Z-80:
the two bytes are stored "backwards" in memory -- that is, the
least-significant byte is stored first, and the
most-significant byte last. 	To figure out what value is
represented, the order must be reversed. The reason for this
is simply that bytes were stored in this manner in the 8008
and 8080, and the Z-80 maintains compatibility with these
microprocessors.

Single- and double-precision floating-point numbers are
kept in groups of four and eight bytes, respectively. 	The
whole manner in which these calculations are carried out
inside the computer is very complicated, and will not be
discussed in detail in this book. 	We will nevertheless
explain more about them in chapters 10 and 11.

MACHINE LANGUAGE PAGE 8

1.7 Analyzing Memory

Since everything inside the TRS-80, or any computer, is stored
in the form of 8-bit bytes, there is no way that you can know
whether they represent a program, data, or ASCII code, without
making an analysis, and this can be very complicated. To help
with making such an analysis, there are programs you can
purchase such as machine-language monitors or disassemblers.
A disassembler is the reverse of an assembler: 	instead of
assembling symbolic instructions into machine code, it
"disassembles" machine code into symbolic instructions.
Machine language monitors also provide commands for displaying
the memory in ASCII form or as hexadecimal numbers.

The first part of this book will be devoted to explaining
the technical details about how the Z-80 microprocessor works
and other necessary facts about the TRS-80. The second part
will then be devoted to explaining practical problems that
involve everyday applications for TRS-80 machine language
programs.

THE ARCHITECTUR
OF THE Z-80 CPU

2.1 Registers

The Z-80 contains two sets of eight internal general-purpose
registers, four 16-bit registers, and two special-purpose
8-bit registers. A REGISTER is a memory location within the
CPU where computation may be carried out. One of the two sets
of eight general-purpose registers is called the MAIN REGISTER
SET and the other is called the ALTERNATE REGISTER SET. The
main set is what you always use in computations. 	The
alternate set is accessed by only two instructions which
exchange the contents of the main set with the alternate set.
The general-purpose registers are called by the names A, F, B,
C, D, E, H,• and L. A is also called the ACCUMULATOR, and it
is the most important register in the computer, because it is
where most of the action takes place. F is also called the
FLAG register or FLAGS, because it is where bits indicating
various conditions are kept. 	F itself is never used in
computations. 	It is automatically set according to the
RESULTS of other computations. 	The remaining registers B
through L may be used either as 8-bit registers or in PAIRS
for 16-bit quantities. In the latter case, B and C, D and E,
and H and L are always used together, and, in such cases, are
designated as BC, DE, and HL. Figure 2-1 shows a diagram of
the registers in the Z-80 CPU.

9

MAIN REG SET
	

ALTERNATEREGSET

ACCUMULATOR
A

FLAGS
F

ACCUMULATOR
A'

FLAGS
F'

B C'

D E D' E'

H L' }

GENERAL
PURPOSE
REGISTERS

INTERRUPT
VECTOR
I

MEMORY
REFRESH
R

INDEX REGISTER IX

INDEX REGISTER IY

STACK POINTER SP

PROGRAM COUNTER PC

SPECIAL
PURPOSE
REGISTERS

Figure 1: The registers in the Z-80 CPU

Two of the 16-bit registers are called INDEX REGISTERS,
designated IX and IY. 	They are used, more or less, as
pointers to a memory location to which an offset value can be
added or subtracted. 	The other two 16-bit registers are
called the STACK POINTER and the PROGRAM COUNTER. The program
counter, abbreviated PC, determines the order in which
instructions are executed. 	When an instruction is being
executed, the PC contains the address of the NEXT instruction
to be executed. 	A branch or jump instruction actually
modifies the PC. The stack pointer, SP, contains an address
that must point to a free area in RAM that is used for
temporary storage of values as the computer is running. If
the stack ever gets destroyed, or if it points to an area in
ROM or nonexistent memory, disaster can occur! The use of the
stack pointer will be discussed in detail in chapter 4.

The remaining 8-bit registers are called the interrupt (I)
and refresh (R) registers. The refresh register makes it easy
and practical to use low-cost dynamic RAM rather than static
RAM in the computer. The latter RAM also produces
significantly greater heat. 	(The TRS-80 uses dynamic RAM.)
Otherwise, the refresh register is unimportant from the

10

Z-80 ARCHITECTURE 	PAGE 11

programmer's standpoint. 	The interrupt register provides a
more flexible system of interrupts for the Z-80 than the 8080.
Interrupts, however, are used only for more advanced real-time
programming and are beyond the scope of this book.

Perhaps you are wondering about the differences between the
Z-80 and the 8080 microprocessors. 	The 8080 has the same
8-bit general registers as the Z-80, but no alternate register
set. In addition, it has no index registers (IX or IY) nor
the interrupt or refresh registers. The instruction set of
the Z-80 will, therefore, be much larger than that of the
8080, because it includes all of the instructions involving
these registers. 	There are very few of the remaining
instructions, however, that the 8080 does not also execute.

In general, it is the programmer's responsibility to keep
track of all the registers he is using and whether their
contents can be changed without causing the program to produce
an error. 	The contents of any register pair can easily be
saved and retrieved, by being pushed onto or popped off the
stack. 	This method can be used to free a register pair for
use in a series of calculations without losing its value. One
of the things that beginners often complain about with
assembly-language programming is that it seems difficult
because there are so many registers to keep track of.
Actually, having many registers is an asset, and programming
the computer is easier than it would be if there were fewer of
them to look after! But there is nothing that you as a
programmer can do to change the structure of the CPU, so the
only thing to do is to learn how it works and take advantage
of its inherent properties.

2.2 Instruction Mnemonics and Operands

In describing the instructions executed by nearly all
computers, the term LOAD is used to indicate a transfer of
data between a memory location and a register in the CPU.
STORE indicates the opposite transfer, from a register to
memory, and MOVE indicates a transfer of data from within the
instruction itself (IMMEDIATE data) to a register. When Zilog
designed the Z-80, they decided to scrap some of this
terminology. All instructions that specify a transfer of data
between a register and a memory location on the Z-80 are
called LOAD instructions, abbreviated by the mnemonic LD. The
direction of the transfer is indicated by the ORDER of the
operands.

If register A is loaded from location 100, this would be
specified by the mnemonic:

Z-80 ARCHITECTURE 	PAGE 12

LD 	A,(100)

whereas if location 100 were loaded from register A, it would
be:

LD 	(100),A

The parentheses around 100 are necessary to show that 100 is
the ADDRESS of the memory location involved in the transfer.
Lack of parentheses would indicate a move instruction:

LD 	A,100

means that A is loaded with the VALUE 100. (The fourth
possibility in this progression, "LD 100,A" would be
meaningless. It would indicate that the value 100 were loaded
from A, but doing so might change "100" to some other value!)

It is very important that you understand the meaning of the
parentheses in these instructions, as this terminology is
basic to descriptions of all instructions on the Z-80.
Whenever parentheses enclose an operand in a Zilog mnemonic,
it means that the operand specifies an address rather than a
data value. An unparenthesized "HL" specifies the HL register
pair, whereas "(HL)" indicates that the CONTENTS of HL specify
an address which is involved in a data transfer.

What is particularly confusing about this terminology is
that the Z-80 was designed as an upgrading of the 8080
microprocessor, so that it was 100 per cent compatible for
executing 8080 instructions. Any 8080 program will run on the
Z-80, and the Z-80 will do much more besides. But in order
for people to transfer their programs to the Z-80, a whole new
terminology had to be learned. This upset some people so much
that they invented their own terminology, designed as
extensions of the 8080's, and implemented it in assembler
programs and documentation. Nowadays, however, most people
use Zilog's terminology, recognizing that it is different from
Intel's. (It has been rumored that Zilog had to invent a new
set of mnemonics for legal reasons, because Intel had
copyrighted its own.) For our purposes, one set of mnemonics
is enough to learn, and the fact that Radio Shack has used
Zilog's terminology throughout its documentation and the
Editor/Assembler program more than tips the balance in that
direction.

2.3 Uses of the Registers

The registers of the Z-80 CPU must always be considered in
relation to the operations that can be carried out in them.

Z-80 ARCHITECTURE 	PAGE 13

While there are many operations that can only be done in
certain registers, there are many others that can be carried
out in any register. 	A, the accumulator, is the most
important register. 	All 8-bit arithmetic and logical
operations involve the accumulator containing one of the
operands and the result of the operation. In addition, some
instructions that fetch or store a byte in memory only allow A
to be used; getting the byte into or out of another register
requires an additional operation. The flag register F is the
other 'half" of the A register. By having F grouped with A in
the CPU, all registers can be treated in two-byte groups.

The HL register pair has two primary uses. First, it is
the "accumulator" for 16-bit arithmetic operations. 	(There
are no 16-bit logical operations.) 	All 16-bit arithmetic
operations use HL as one of the operand registers and the
result register. Second, HL can be used to contain an address
pointing to a memory location whose contents are used in an
8-bit operation. 	Whenever this is done, the operand is
indicated as "(HL)". While the BC and DE register pairs can
sometimes be used in this manner, there are many more Z-80
instructions that involve (HL). (In 8080 mnemonics, 	(HL) 	is
specified as M, meaning "memory".)

Both the individual register B and the BC register pair are
often used to hold a COUNT of the number of times something is
to be repeated, so these are sometimes called the "count"
registers. 	B is used as a count with the DJNZ instruction,
the mnemonic for which is supposed to suggest the mellifluous
phrase "decrement B and branch to the location specified if it
is not zero". The BC register pair is used as a count for all
block transfer instructions -- LDI, LDIR, etc. 	These
operations are used to move an entire block of memory from one
area to another, and they will be described in chapter 3.
Finally, the C register is the only register used for certain
input and output operations.

The DE register pair has many uses analogous to HL and BC,
except that there are fewer such instructions. Both (BC) and
(DE) can be used to specify addresses like (HL), but only
loading to or from the accumulator is possible. Thus,

LD 	A,(DE)
and

LD 	(BC) ,A

are legal, but not

LD 	H,(BC)

whereas

Z-80 ARCHITECTURE 	PAGE 14

LD 	H,(HL)

is legal.

2.4 Flags

The flag register F is never used to hold data. It contains
several bits logically called "flags", that are set according
to the RESULTS of other calculations. It is an eight-bit
register, even though there are only six flags, and only four
of these are really important for most programming
applications. These four flags are called the ZERO flag (Z),
the SIGN flag (S), the CARRY flag (C), and the PARITY/OVERFLOW
flag (P/V). The other two flags, the HALF-CARRY flag (H) and
the ADD/SUBTRACT flag (N), are used only with the DAA (decimal
adjust accumulator) instruction, which is used only for BCD
numbers, a relatively rare application.

The carry flag C (not to be confused with register C!) 	is
set whenever an add instruction produces a result that is one
bit too large to be contained in a single register.
Correspondingly, it is also set when a subtract operation
produces a borrow. Since the Z-80 performs only addition and
subtraction of 8-bit and 16-bit values, the carry flag is
necessary not only for addition and subtraction of larger
values, but also for implementing software routines for
multiplication and division. 	These operations will be
discussed in chapter 13. The carry flag is also affected by
shift and rotate instructions, and it is cleared (set to zero)
by logical operations. "No carry" is indicated "NC".

The zero flag is set only if the result of an operation is
zero. 	"Non zero" is indicated "NZ". The sign flag, which is
indicated by the conditions plus (P) or minus (M), is a copy
of the sign bit (7) of the accumulator. The zero, sign, and
carry flags can also be set by compare instructions. The P/V
flag, indicated by the conditions PE (parity even) or PO
(parity odd), is used both for overflow conditions and to
indicate parity, depending on the instruction. Overflow means
that the result of an operation produced a value too large to
be contained in the register, whereas parity means that the
sum of the bits in the register is odd (PO) or even (PE). The
flag is also used for other purposes, such as during the
execution of block transfer instructions.

Except for arithmetic, shift, and rotate instructions that
use the carry flag, the flags are USED only by the jump, call,
and return instructions. 	(They are SET by other
instructions.) These are CONDITIONAL operations that are
executed only if the condition they specify is true.

Z-80 ARCHITECTURE 	PAGE 15

2.5 Addressing Modes

Addressing modes summarize all the ways in which instructions
may be executed on the computer. 	To perform any operation
involving memory, the computer must know the address of the
location involved. For convenience of programming, there are
always many ways in which addresses may be specified. The
ZILOG Z80-CPU TECHNICAL MANUAL gives ten addressing modes for
the Z-80. They can be described as follows:

(1) IMMEDIATE: A byte contained in the instruction is moved
to a register.
Instruction length = 2 bytes.
Example: 	LD 	A,1
A is loaded with the value 1.

(2) IMMEDIATE EXTENDED: Same as above, except a two-byte
value is moved to a register pair.
Length = 3 bytes.
Example: 	LD 	HL,1000
The HL register pair is loaded with the value 1000.

(3) RELATIVE: Applies only to the jump relative (JR)
instructions. The value in the following byte is added
to the location contained in the PC to determine the
next address. The address indicated must lie in the
range -128 to +127 bytes from the present instruction.
Length = 2 bytes.
Example: 	JR 	$+10
("$" means "address of the current instruction".) Jumps
to the location 10 bytes following the present one.

(4) EXTENDED: The address of the operand is specified in
the instruction.
Length = 3 or 4 bytes.
Example: 	LD 	A,(1000)
A is loaded from location 1000.

(5) INDEXED: The address of an operand is determined by
adding a byte called a DISPLACEMENT to the value
contained in an index register.
Length = 3 or 4 bytes.
Example: 	LD 	A,(IX+5)
A is loaded from the location whose address is computed
by adding 5 to the value in index register IX.

(6) REGISTER: One register is loaded from another one.
Length = 1 byte.
Example: 	LD 	B,C
B is loaded from C.

Z-80 ARCHITECTURE 	paGn 16

(7) zmYLIEn; Not really a different mode! This means that a
register is not indicated in the mnemonic, but
implied by it.
Length: l or 2 bytes.
Example: SUB a
B is subtracted (from x, by implication).

(8) REGISTER INDIRECT: The 	address of 	an 	operand is
contained in a register pair (BC, DE, or HL).
Length = l byte.
Example: 	oz a,(eC)
» is loaded from the location whose address is contained
in the BC register pair.

(9) Bzz; An individual bit in a register is set, reset, or
tested.
Length = 2 bytes.
Example; SET 6,o
Bit 6 in register a is set to l.

(10) MODIFIED eaGa ZERO: Applies only to the restart (usc)
instructions. 	only three azrS of the address are
specified in the instruction itself. The address must
be a multiple of O between 0 and 56.
Length = I byte.
Example: gST 8
A call is made to location 8.

2.6 Instruction Timing

All microcomputers are run by means of a CLOCK which provides
a basic frequency according to that instructions are executed.
While the clock frequency of the o-80 can be as high as 4 MHz
(millions of cycles per second), the TxS-80 uses a olvob
frequency of approximately 1.77 max, corresponding to a period
of 563 nanoseconds (billionths of a second). The z-80 CPU
executes its instructions by going through a combination of a
few basic operations. They include memory read or write, I/o
device read or write, and interrupt acknowledge operations.
Each of these may require from three to six clock periods,
aUiou are referred to as z cycles. 	The basic operations
themselves are referred to as m (machine) cycles.

The zus-80 nozzoo aSsEmaLoo o8uo zwSTeunTznN MANUAL
discusses each instruction of the x-80 separately, and
provides information on the number of m and r cycles required.
It also provides a figure of ^4 Mao o,z.^, meaning 4 oao
execution time. This is misleading, because the TRG-80 does
not run at 4 MHz (although the coS-80 Model II does).
Instruction execution times in the manual must be multiplied

Z-80 ARCHITECTURE 	PAGE 17

by approximately 2.26 in order to determine the actual TRS-80
time. The manual shows execution times ranging from 1.0 to
5.75 microseconds (millionths of a second), thus corresponding
to 2.26 to 13 microseconds for the TRS-80. The fact that the
TRS-80 can execute over 440,000 operations in one second is a
true measure of its amazing computing power.

OVERVIEW OF THE Zw80
.C; ;RUCTION

Once you are familiar with the registers and internal
architecture of the Z-80 CPU, the next thing you probably are
wondering about is the operations that the computer can
execute. Our intention in this chapter is merely to give a
summary of the instructions that the Z-80 can execute -- not
to describe their operation in full. Complete tables of the
Z-80 instructions are given in Appendix A. Since the really
important point about assembly language programming is being
able to write programs that DO something, it is better to
study the function of individual instructions in the context
of programming examples. 	The second part of this book is
devoted to practical applications of TRS-80 assembly language
programming.

An operation executed by the computer may affect or be
affected by three different types of items, which are
specified as OPERANDS. Most operations involve the use of one
or more REGISTERS. These include either the main register set
(A, B, C, D, E, H, and L) and the index registers (IX and IY),
which are the ones you normally think about, or the stack
pointer (SP) and program counter (PC), which you may not think
of as holding data as the others do. The Z-80 often treats
the operand (HL), which refers to the memory location pointed
to by the H and L register pair, as a single register
analogous to one of the main registers, even though operations
referring to (HL) are always listed as "separate" operations
in the tables. The alternate register set is used by only two

18

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 19

instructions -- 	EXX and EX AF,AF' -- which exchange their
contents with the main register set. 	Any subsequent
computations are carried out using the main registers only.

The next type of operand might include one or more MEMORY
LOCATIONS in the computer. 	A few instructions can affect
entire blocks of data, but most affect only one or two bytes.

The third type of operand includes the CONDITION CODES.
Sometimes a condition code is indicated in the instruction
itself, such as a jump on non-zero. At other times, one or
more condition codes are set according to the results of
computations carried out. It is the latter situation that is
indicated in the instruction tables, since the instructions
that use the condition codes do not alter them.

Other information you might want to know about 	Z-80
instructions includes how many bytes they occupy, how long
they take to execute (in M or T cycles), and their object
codes. 	We will refer to instruction times only by T cycles,
which are 563 nanoseconds for the TRS-80 (250 nanoseconds for
the TRS-80 model II). This value must be multiplied by the
number of T cycles to determine the actual instruction time.

Many people get confused by the concept of object code,
thinking that there is some mysterious force inside the
computer that causes it to run. 	Actually, it is just a
succession of numbers stored in memory. 	Since a byte can
contain 256 different values, you might think that there would
be 256 Z-80 instructions. In fact, there are many more than
this number because, the Z-80 has several different
instruction formats requiring from one to four bytes. 	How
many instruction there are depends on how you count. For
example, "LD r,r'" which copies the contents of one register
into another, is listed as one instruction; but when you
consider that there are seven different registers that may
occupy either position in the instruction, then there are 49
instructions included under this one mnemonic. When you count
instructions in this way, there are 666 of them for the Z-80.

In Zilog's terminology, the ORDER of the operands indicates
the function of the items involved in data transfer
instructions. The first operand is the DESTINATION operand
and the second is the SOURCE. For example, "LD A,B" indicates
that B is copied into A, whereas "LD B,A" indicates that A is
copied into B.

If an operand is enclosed in parentheses, it means that the
operand refers to the CONTENTS of a register or memory
location. Unparenthesized operands denote either IMMEDIATE
DATA or the ADDRESS of a memory location.

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 20

Z-80 instructions have been divided into eleven groups by
the manufacturer ZILOG. Most books use this grouping as the
point of departure for discussing the instructions, and we
will do the same here. In our listings below, the following
abbreviations will be used:

✓ single register: A, B, C, D, E, H or L.
IR 	index register: IX or IY.
(IR+d) the contents of an address determined by

adding a displacement byte (d) to an index
register.

s 	a single register operand, which may be
any of the following: r, n, (HL), or (IR+d).

dd 	double register: BC, DE, HL, or SP.
qq 	double register: BC, DE, HL, or AF.
pp 	double register: BC, DE, SP, and either IX

or IY depending on the operation.
n a single byte contained within the

instruction itself.
(n) 	in input and output instructions, a byte

contained within the instruction, whose value
selects an I/O port.

nn 	two data bytes contained within the
instruction itself.

(nn) 	a two-byte value contained within the
instruction, referring to a memory address.

e in jump relative instructions, a value added
to the current value of the PC to determine
a branch address.

p 	in RST (restart) instructions, address of the
location called: a multiple of 8 between 0
and 56.
bit: 0, 1, 2, 3, 4, 5, 6, or 7.

cc 	condition code: NZ, Z, NC, C, P0, PE, P, M.
c 	condition code in jump relative instruction:

NZ, Z, NC, or C.
(HL) 	the contents of the memory location pointed

by the HL register pair. Similar use is made
of (BC) and (DE).

I or R the Interrupt or refresh registers.
<= 	This symbol is used to indicate that the

operand on the right is copied to the operand
on the left.

.> 	This symbol is used in right shift and
rotate instructions, to indicate that the
operand on the left is copied to the operand
on the right.

<=> 	This symbol indicates that the two operands
are exchanged or swapped.

8080 	When indicated in a note field, this means
that the instruction also exists on the 8080
microprocessor.

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 21

3.1 Eight-Bit Load Group

All the instructions in this group transfer (copy) one byte of
data between two CPU registers, or between a CPU register and
a single memory location. Confusingly, Zilog refers to all
such instructions as "loading", whereas most computer
manufacturers have used "load" only to refer to a transfer
from memory to a register. Moving data from a register to
memory is called "storing".

Since 	none 	of 	these 	operands 	except 	LD A,I and LD A,R
affect the condition codes, 	they 	are 	not 	mentioned 	in 	the
table below.

Length 	No. 	of T
Instruction 	(Bytes) 	Cycles 	Notes 	Function
LD 	r,r' 1 	4 8080 	r 	<= 	r'
LD 	r,n 2 	7 8080 	r <= n
LD 	r,(HL) 1 	7 8080 	r 	<= 	(HL)
LD 	r,(IR+d) 3 	19 r 	<= 	(IR+d)
LD 	(HL) ,r 1 	7 8080 	(HL) 	<= 	r
LD 	(IR+d),r 3 	19 (IR+d) 	<= 	r
LD 	(HL) ,n 2 	10 8080 	(HL) 	<= 	r
LD 	A,(BC) 1 	7 8080 	A <= 	(BC)
LD 	A,(DE) 1 	7 8080 	A <= 	(DE)
LD 	A,(nn) 3 	13 8080 	A <= 	(nn)
LD 	(BC),A 1 	7 8080 	(BC) 	<= A
LD 	(DE),A 1 	7 8080 	(DE) 	<= A
LD 	(nn) ,A 3 	13 8080 	(nn) 	<= A
LD 	A,I 2 	9 1 	A <= I register
LD 	A,R 2 	9 1 	A <= R register
LD 	I,A 2 	9 I register <= A
LD 	R,A 2 	9 R register <= A

Notes:

(1) 	Z 	and S flags 	set 	according to 	the 	results 	of the
instruction. The 	interrupt enable flip/flop is copied 	to the
P/V flag.

3.2 Sixteen-Bit Load Group

These instructions are similar to the eight-bit loads, except
that sixteen bits of data are involved in the transfer. No
condition codes are affected by these instructions.

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 22

Length 	No. of T
Instruction 	(Bytes) 	Cycles 	Notes 	Function
LD 	dd,nn 	3 10 8080 dd <= nn
LD 	IR,nn 	4 14 IR <= nn
LD 	HL,(nn) 	3 16 8080 HL <= 	(nn)
LD 	dd,(nn) 	4 20 dd 	<= 	(nn)
LD 	IR,(nn) 	4 20 IR <= 	(nn)
LD 	(nn),HL 	3 16 8080 (nn) 	<= HL
LD 	(nn),dd 	4 20 (nn) 	<= dd
LD 	(nn),IR 	4 20 (nn) 	<= 	IR
LD 	SP,HL 	1 6 8080 SP <= HL
LD 	SP,IR 	2 10 SP <= IR
PUSH 	qq. 	1 11 8080 (SP-2) 	<= 	qq(L)

(SP-1) 	<= 	qq(H)
0 SP <= SP-2

PUSH 	IR 	2 15 (SP-2) 	<= 	IR(L)
(SP-1) 	<= 	IR(H)
SP <= SP-2

POP 	qq 	1 10 8080 qq(H) 	<= 	(SP+l)
qq(L) 	<= 	(SP)
SP <= SP+2

POP 	IR 	2 14 IR(H) 	<= 	(SP+l)
IR(L) 	<= 	(SP)
SP <= SP+2

3.3 	Exchange and Block Transfer and Search Group

These instructions really include two different groups:
exchange instructions, which swap two sets of operands, a-d
block transfer and search instructions, which move or compare
large blocks of data. These will be described in more detail
in later chapters, 	but
presented here.

Length
Instruction 	(Bytes)

	

a 	summary 	of

	

No. 	of T
Cycles 	Notes

their 	operations 	is

Function
EX DE,HL 1 4 8080 DE <=> HL
EX AF,AF' 1 4 AF <=> AF'
EXX 1 4 BC <=> 	BC'

DE <=> DE'
HL <=> HL'

EX (SP),HL 1 19 8080 H <=> 	(SP+1)
L <=> 	(SP)

EX (SP),IR 2 23 IR(1) <=> 	(SP+l)
IR(2) <=> 	(SP)

LDI 2 16 1 (DE) 	<= 	(HL)
DE <= DE+l
HL <= HL+1
BC <= BC-1

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 23

Instruction (Bytes) Cycles Notes Function
LDIR 	2 	21 if BC<>0 2 	(DE) <= (HL)

16 if BC=0 DE <= DE+1
HL <= HL+1
BC <= BC-1
Repeat till BC=0

LDD 	2 	16 	1 	(DE) <= (HL)
DE <= DE-1
HL <= HL-1
BC <= BC-1

LDDR 	2 	21 if BC<>0 2 	(DE) <= (HL)
16 if BC=0 DE <= DE-1

HL <= HL-1
BC <= BC-1
Repeat till BC=0

CPI 	2 	16 	3 	A compared to (HL)
HL <= HL+1
BC <= BC-1

CPIR 	2 	21 if BC<>0 3 	A compared to (HL)
and A<>(HL) 	HL <= HL+1
16 if BC=0 BC <= BC-1

0 	or A=(HL) 	Repeat till A=(HL)
or BC=0

CPD 	2 	16 	3 	A compared to (HL)
HL <= HL-1
BC <= BC-1

CPDR 	2 	21 if BC<>0 3 	A compared to (HL)
and A<>(HL) 	HL <= HL-1
16 if BC=0 	BC <= BC-1
or A=(HL) 	Repeat till A=(HL)

or BC=0

Notes:
(1) P/V flag set according to result of operation.

N and H set to zero.

(2) P/V flag set to 0 at conclusion of operation.
N and H set to zero.

(3) P/V flag = 0 if result of BC-1=0, otherwise P/V=1.
Z flag is 1 if A=(HL), otherwise 0. N set to 1.
S and H flag set according to result of compare.

3.4 Eight-Bit Arithmetic and Logical Group

These instructions perform arithmetic and logical operations
on single-byte quantities. 	Except for the increment and
decrement instructions, all arithmetic is carried out only in
the accumulator, although the operand A is not indicated in

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 24

some of the instruction mnemonics. Condition codes are set by
every one of the operations, as explained in the notes. The
symbol "CY" indicates the carry bit or C flag, which is used
in certain arithmetic operations. The full range of
instruction operands is shown only for the ADD instruction.
The number of T cycles and condition codes for individual
instructions of the other operations is the same as for the
corresponding instruction shown for ADD. The logical
operations AND, OR, and XOR are indicated by the words since
the symbols do nt exist on the TRS-80's keyboard.

Length 	No. of T
Instruction (Bytes) Cycles Notes Function
ADD A,r 1 4 8080,1 A <= A+ r
ADD A,n 2 0 7 8080,1 A <= A+ n
ADD A,(HL) 1 7 8080,1 A <= A + 	(HL)
ADD A,(IR+d) 3 19 1 A <= A + 	(IR+d)
ADC A,s 1-3 4-19 8080,1 A <= A + s + CY
SUB s 1-3 4-19 8080,2 A <= A- s
SBC A,s 1-3 4-19 8080,2 A <= A - s - CY
AND s 1-3 4-19 8080,3 A <= A AND s
OR s 1-3 4-19 8080,3 A <= A OR s
XOR s 1-3 4-19 8080,3 A <= A XOR s
CP s 1-3 4-19 8080,6 A- s
INC r 1 4 8080,4 r <= r+ 1
INC (HL) 1 11 8080,4 (HL) 	<= 	(HL) 	+ 	1
INC (IR+d) 3 23 4 (IR+d) 	<= 	(IR+d)+1
DEC r 1 4 8080,5 r <= r -1
DEC (HL) 1 11 8080,5 (HL) 	<= 	(HL) 	- 	1
DEC (IR+d) 3 23 5 (IR+d) 	<= 	(IR+d)-1

Notes:
(1) C, S, Z, and H set according to the result of the
operation. 	The P/V flag contains the overflow of the result
of the operation. N set to 0.

(2) Condition codes set as in note 1, except N set to 1. IR
instructions do not exist on the 8080.

(3) S, Z, and H set according to the result of the operation.
C and N set to zero. The P/V flag is set if the resulting
parity is even, otherwise reset.

(4) All codes set as in note 1, except C unaffected.

(5) All codes set as in note 2, except C unaffected.

(6) Compare operations perform a subtract but leave the
operands unaffected, thus changing only the condition codes,
which are set as in note 2.

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 25

3.5 General-Purpose Arithmetic and CPU Control Groups

This group includes a bunch of miscellaneous instructions.
The operation of the DAA instruction is too complicated to
describu here, but will be explained in more detail below.

Instruction
DAA

CPL

NEG

CCF

SCF
NOP
HALT

DI
EI
IM 0
IM 1
IM 2

Notes:

(1) C, Z,

Length
(Bytes)

No. 	of T
Cycles

1 4

1 4

2 4

1 4

1 4
1 4
1 4

0
1 4
1 4
2 8
2 8
2 8

S, P/V, and H flags

Notes 	Function
8080,1 	Decimal adjust

accumulator
8080,2 	Complement

accumulator (one's
complement: zeros
changed to ones,
ones to zeros.

3 	Negate accumulator
(two's complement)

80(0,4 	Complement carry
flag

8080,5 	Set carry flag
8080,6 	No operation
8080,6 	CPU operation

suspended
8080,6 	Disable Interrupts
8080,6 	Enable Interrupts
6 	Interrupt mode 0
06 	Interrupt mode 1
6 	Interrupt mode 2

set according to result of
operation. P/V indicates parity. N unaffected.

(2) C, Z, S, and P/V flags unaffected. N and H set to 1.

(3) C, Z, S, P/V, and H flags set according to result of
operation. P/V indicates overflow. N set to 1.

(4) C set according to operation. Z, P/V, and S unaffected.
H unknown, N set to 1.

(5) C set to 1, N and H to 0. Z, P/V, and S unaffected.

(6) No flags affected.

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 26

3.6 16-Bit Arithmetic Group

These operations perform arithmetic calculations on 16-bit
quantities. 	For most of the operations, the HL register pair
is used as an "accumulator" just as the A register is used for
the 8-bit operations. This means that HL is used to hold one
of the operands, and it contains the result after the
operation is executed. The index registers can also be used
in this way for additions.

Length
	

No. of T
Instruction (Bytes) Cycles Notes Function

HL,ss 1 11
HL,ss 2 15
HL,ss 2 15
IR,pp 2 15
ss 1 6
IR 2 10
ss 1 6
IR 2 10

8080,1 	HL <= HL + ss
2 	HL <= HL + ss + CY
2 	HL <= HL - ss 	CY
1 	IR <= IR + pp
8080,3 	ss <= ss + 1
3 	IR <= IR + 1
8080,3 	ss <= ss - 1
3 	IR <= IR - 1

ADD
ADC
SBC
ADD
INC
INC
DEC
DEC

Notes:
(1) C set according to the result of the operation. 	S, Z,
and P/V unaffected. N set to 0, H unknown.

(2) C, S, Z, and P/V set according to the result of the
operation. P/V indicates overflow. N set to 0 for ADC, 1 for
SBC. H unknown.

(3) No flags affected. 	(N.B.)

3.7 Rotate and Shift Group

These instructions include a large number of operations that
shift or rotate single registers. 	There are several
redundancies among them, because the Z-80 executes both the
8080 instructions, which use only the accumulator, and unique
Z-80 instructions, which use every possible register. All
shifts or rotates move the affected register by only one bit.

A SHIFT operation moves each bit in a register to the next
bit, in a left or right direction, and fills in the vacated
bit with a zero. A ROTATE operation, of which there are far
more than shifts, moves the bit shifted off the end around to
the other side. 	All of this gets complicated by the way in
which the carry bit participates in the operation. There are
both 8-bit instructions, in which a bit is moved both into or
out of the carry bit and into the register, and 9--bit
instructions, in which the carry bit participates as if it

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 27

were an extra bit in the register. The N and H flags are
reset by all of these instructions, and the P/V flag indicates
parity. The operation of the RLD and RRD instructions, which
are intended for BCD operations, are too complicated to
describe here, but will be explained in more detail below.

Length No. of T
Instruction (Bytes) Cycles Notes 	Function
RLCA 	1 	4 	8080,1 Rotate A lett circular

CY & bit 0 <= bit 7
RLA 	1 	4 	8080,1 Rotate left accumulator

CY <= bit 7
a bit 0 <= CY

RRCA 	1 	4 	8080,1 Rotate A right circular
bit 0 => CY & bit 7

RRA 	1 	4 	8080,1 Rotate right accumulator
bit 0 => CY
CY => bit 7

RLC r 	2 	8 	2 	Rotate left circular r
(Same as RLCA, but for
any register)

RLC (HL) 	2 	15 	2 	Rotate left circular
(HL)

RLC (IR+d) 	2 	23 	2 	Rotate left circular
(IR+d)

RL 	s 	2 	8-23 	2 	Rotate left s (Same as
RLA, but for any r,
(HL), or (IR+d))

RRC s 	2 	8-23 	2 	Rotate right circular s
(Same as RRCA but for
any s)

RR 	s 	2 	8-23 	2 	Rotate right s (Same as
RRA but for any s)

SLA s 	2 	8-23 	2 	Shift left arithmetic s
CY <= bit 7
bit 0 <= 0

SRA s 	2 	8-23 	2 	Shift right arithmetic s
bit 0 => CY
bit 7 unchanged

SRL s 	2 	8-23 	2 	Shift right logical s
bit 0 => CY
0 => bit 7

RLD 	2 	18 	3 	Rotate digit left.
RED 	2 	18 	3 	Rotate digit right

Notes:
(1) C set according to result of operation. S, Z, and P/V
unaffected.

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 28

(2) C, Z, S, and g/V set according to result of operation.

(3) x, S, and e/v set according to result of operation. C
unaffected.

3.8 Bit Set, Reset, and Test Group

All of these operations exist only on the o-80 -- none on the
8080. A BIT operation is a bit test for zero. GDr seta a bit
to l; nBGur sets it to 0,

Length No. of ?
Instruction (Bytes) Cycles Notes Function
BIT b,c 	2 	8 	l 	Bit b in register c

tested
BIT b,(oL) 	2 	12 	l 	Bit b in location

(8L) tested
BIT b,(Ia+d) 	4 	20 	I 	Bit b in location

(Zu+d) tested
SET b,c 	2 	8 	3 	Bit b in register r

set to l
SET b"(oL) 	2 	15 	3 	Bit b in (HL) set
SET b,(In+d) 	4 	23 	2 	Bit b in (In+d) set
8EG b,o 	2-4 	8-23 	3 	Bit b in s reset

(s may be any c,
(HL), or (IR+d)}

Notes;
(l) x set according to result of operation. C unaffected.

S and p/V unknown. m set to 0, 8 to l.

(2) No flags affected.

3.9 Jump Group

These instructions bcauob to a location specified, often
depending on a particular condition. 	Sometimes the bcaunb
address is contained within the instruction. In the case of
jump relative instructions, the branch address is determined
by adding a displacement value e to the current contents of
the program counter. None of these instructions affects the
condition codes.

Instruction

OVERVIEW OF THE

Length 	No. 	of T
(Bytes) 	Cycles

Z-80

Notes

INSTRUCTION SET 	PAGE 29

Function
JP nn 3 10 8080 PC <= 	nn
JP cc,nn 3 10 8080 If cc true, 	PC <= nn

Continue 	if cc 	false
JR e 2 12 PC <= PC + e
JR c,e 2 7 Continue 	if c false

12 If c true,
PC <= PC + e

JP (HL) 1 4 8080 PC 	<= 	(HL)
JP (IR) 2 8 PC 	<= 	(IR)
DJNZ e 2 B <= B - 1

8 If B = 0, 	continue
13 If B<>0, 	PC <= PC+e

3.10 Call and Return Group

Call instructions push the present contents of the PC ont.o the
stack and branch to a specified location. Return instructions
pop the contents off the top of the stack and branch to the
resulting location, thus resuming execution from the
instruction immediately following the call. A restart
instruction is identical to a call, except that the location
called is specified in only three bits, and must lie within
the first 64 bytes of memory. 	None of these instructions
affects the condition codes.

Length 	No. of T
Instruction (Bytes) Cycles Notes Function
CALL nn 3 17 8080 (SP-1) 	<= 	PC(H)

(SP-2) 	<= 	PC(L)
PC <= nn

CALL cc,nn 3 10 8080 If cc 	false, 	continue
17 If cc 	true,

same as CALL
RET 1 10 8080 PC(L) 	<= 	(SP)

PC(H) 	<= 	(SP+1)
RET cc 1 5 8080 If cc 	false, 	continue

11 If cc 	true,
same as RET

RETI 2 14 Return from interupt
(same as RET)

RETN 2 14 Return from non-
maskable interrupt

RST p 1 11 8080,1 (SP-1) 	<= 	PC(H)
(SP-2) 	<= 	PC(L)
PC(H) 	<= 	0
PC(L) 	<= 	p

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 30

Notes:
(1) p must be a multiple of 8 from 0 to 56.

3.11 Input and Output Group

These instructions transfer a byte of data between a CPU
register and an external input/output device, accessed through
an I/O port specified in the instruction. The symbol (n)
indicates that the value n specifies the port, whereas (C)
indicates that the port number is taken from register C. Some
of these instructions transfer entire blocks of data at a
time. 	Except for the 8080-compatible instructions, the
contents of register B are placed on the top half of the
address bus. This is a negligible factor for the TRS-80.

Length 	No. of T
Instruction (Bytes) Cycles Notes Function
IN
IN
INI

A,(n)
r,(C)

2
2
2

11
12
16

8080,1
2
3

A <= 	(n)
r 	<= 	(C)
(HL) 	<= 	(C)
B <= B-1
HL <= HL+1

INIR 2 21 if BC<>0 4 (HL) 	<= 	(C)
16 if BC=0 B <= 8-1

HL <= HL+1
IND 2 16 3 (HL) 	<= 	(C)

B <= B-1
HL <= HL-1

INDR 2 21 if BC<>0 4 (HL) 	<= 	(C)
16 if BC=0 B <= B-1

HL <= HL-1
OUT (n),A 2 11 8080,1 (n) 	<= A
OUT (C) ,r 2 12 1 (C) 	<= 	r
OUTI 2 16 3 (C) 	<= 	(HL)

B <= B-1
HL <= HL+1

OTIR 2 21 if BC<>0 4 (C) 	<= 	(HL)
16 if BC=0 B <= B-1

HL <= HL+1
OUTD 2 16 3 (C) 	<= 	(HL)

B <= B-1
HL <= HL-1

OTDR 2 21 if BC<>0 4 (C) 	<= 	(HL)
16 if BC=0 B <= B-1

HL <= HL-1

Notes:
(1) Condition codes unaffected.

OVERVIEW OF THE Z-80 INSTRUCTION SET 	PAGE 31

(2) C unaffected. S, Z, P/V and H set according to result of
operation. N set to 0. P/V indicates parity.

(3) C unaffected, Z set according to result of operation.
set to 1. P/V, S, and H unknown.

(4) C unaffected. Z and N set to 1. Other flags unknown.

THE STACK AND
/4_,i771.,rfir7r

4.1 The Stack Area and Stack Pointer

The STACK is an area in memory where data values from the CPU
registers can be stored and retrieved. The STACK POINTER (SP)
is a 16-bit register in the CPU that contains the address of
the current location that is at the "top" of the stack. 	The
need for a stack area may seem strange, since data may always
be stored or retrieved by using the LD instructions. 	Many
earlier computers did not have a stack area. Understanding
the use of the stack is crucial to writing any assembly
language program for the TRS-80, for if the stack or stack
pointer ever yet destroyed, the entire computer will not run!

The idea of having a general area in memory for storing and
retrieving data is a good one, because the need to do this
occurs so frequently when running a program. The stack does
not ?ligayS reside at any particular area of memory. Where it
is located is determined by the programmer, through the use of
one of the load stack pointer instructions.

The stack is organized as a "last in - first out" or LIFO
system. When new values are "pushed" onto the stack, they are
saved "backwards" in memory, and the stack pointer is
decremented by 2. When values are "popped" out of the stack,
the SP is incremented by 2. This is why the stack pointer
usually points below its original value. 	Figure 4-1
illustrates the way the stack works.

32

THE STACK AND ITS APPLICATIONS 	PAGE 33

Location 	Contents 	Comments
7000 	F3 	Registers saved here if PUSH
7001 	OE 	operation executed.
7002 	14 	Current top of stack. Contents
7003 	26 	moved to registers if POP executed.
7004 	39 	Next level of stack after next POP
7005 	8A 	executed.
SP 	= 	7002

	
Contents of stack pointer register.

Figure 4-1: Registers are saved in the stack in a "backwards"
order. 	In this example, the stack pointer SP contains 7002.
If a PUSH or CALL operation is executed, register contents are
saved at 7001 and 7000, and the SP is decremented by 2. If a
POP or RET is executed, the contents of 7002 and 7003 are
moved to registers, and the SP incremented by 2.

4.2 PUSH and POP Instructions

All uses of the stack are for double registers only. One of
the primary uses of the stack is through the PUSH and POP
instructions. PUSH saves the contents of a double register in
the stack, and POP retrieves them. You can PUSH or POP AF,
BC, DE, HL, IX, and IY. PUSH and POP instructions for the
general registers require only one byte of memory (those for
the index registers require two), and the execution of a PUSH
or POP is always faster than a load referring to a memory
location. 	When the values in a register pair are pushed onto
the stack, the registers themselves are unchanged.

Let us suppose, for example, that the SP contains 4288H.
(The "H" appended to a number means that it is hexadecimal.)
Upon executing a PUSH HL instruction, the computer saves
register H in location 4287H, L in 4286H, and leaves the SP
containing 4286H. 	As with all double register saves, the
least-significant byte is followed in memory by the most-
significant byte. If this instruction were to be followed by
a POP DE, E would be loaded from 4286H and D from 4287H, and
the SP left pointing to 4288H. Thus, the stack pointer always
contains the address from which data will be popped.

4.3 Call and Return Instructions

Another primary use of the stack pointer is with the CALL and
RETURN instructions. 	(RETURN is abbreviated RET.) You are
probably familiar with the concept behind CALLs and RETURNs
from the GOSUB and RETURN statements in Basic. A SUBROUTINE
is a portion of a program that can be entered from different
locations, with the ability to return to the location
immediately following the CALL when it is over. 	Whenever any

THE STACK AND ITS APPLICATIONS 	PAGE 34

Z-80 instruction is being executed, the program counter (PC)
points to the NEXT instruction in memory. 	Thus, when the
computer encounters a CALL instruction, the PC contains the
return address. What happens during a CALL is that the
contents of the PC are pushed onto the stack, the SP is
decremented by 2, and the computer branches to the location
specified. 	When a RETURN is executed, the address is popped
off the stack, the SP is incremented by 2, and the computer
branches to the address. Naturally, if the stack area is used
by the subroutine, the SP must be returned to its original
value before the RETURN is executed. This is one way in which
inexperienced programmers frequently make errors.

Both the CALL and RET instructions of the Z-80 can be
executed, unconditionally or conditionally, depending on the
conditions NZ, Z, NC, C, PO, PE, P, and M. For example, CALL
NZ,ADR would call the location named ADR only if the condition
NZ were true, and RET NZ would return only on the same
condition. These features greatly enhance the flexibility of
subroutine usage with the Z-80.

4.4 Restart Instructions

The RST (restart) instructions are very similar to the CALL
instructions. These one-byte instructions are, in effect,
calls to locations 0 through 56 (38H) in multiples of 8. The
reason for this limitation is that only 3 BITS of the address
are included in the instruction itself. 	(A regular CALL
requires 3 bytes, 2 of which contain the address called.)
Unfortunately, these instructions are not as useful on the
TRS-80 as they are on the Z-80 in general, because locations 0
through 56 are in ROM (although calls to them are "vectored"
out of ROM as explained in chapter 5). 	These locations are
already used extensively by the Level I and Level II Basic
interpreters. What you cannot do is write a new subroutine to
be loaded into these memory locations.

4.5 Miscellaneous Stack Instructions

There are several miscellaneous instructions that use the
stack pointer register or the value at the top of the stack.
Three instructions, "LD SP,HL", "LD SP,IX", and "LD SP,IY",
set the SP to some specific value taken from one of the other
16-bit registers (HL, IX, or IY). "LD SP,nn" takes it from
immediate data, and "LD SP,(nn)" takes it from a memory
location. 	"LD (nn),SP" saves the value of the SP in a memory
location. The operand SP refers to the ADDRESS of the stack
area, whereas (SP) refers to the CONTENTS of the two locations
at the top of the stack. "EX (SP),HL", "EX (SP),IX", and "EX

THE STACK AND ITS APPLICATIONS 	PAGE 35

(SP),IY" swap the values at the top of the stack with the
specified 16-bit registers. 	The SP itself is unchanged by
these operations. °INC SP" increments the stack pointer, and
"DEC SP" decrements it. The stack area is also used to save
registers during interrupt processing, but we will not discuss
that here.

4.6 Subroutines

The stack has numerous applications in practically every Z-80
program. The most important of these is undoubtedly the
establshment and use of subroutines. 	Subroutines should
ALWAYS be used when a particular sequence of operations is to
be repeated from more than one location within a program. The
CALL to the subroutine and its associated RET require only
four bytes and 27 machine cycles to execute. 	The only
conditions that warrant not using a subroutine are that the
operations require four bytes or less, or that the execution
timing is so critical that you cannot spare the 27 machine
cycles (about 15 microseconds).

If you need to use a register in which to carry out some
operation, but you also need to retain its present contents,
you can PUSH it onto the stack and POP it off afterwards. For
example, suppose that a subroutine needs to use HL as a
scratch register, but needs to return with the present
contents of HL unchanged. There are two general solutions to
this problem:

CALL SUB

SUB PUSH HL'

POP 	HL.
RET

or:

PUSH HL
CALL SUB
POP 	HL_

In other words, the PUSH and POP can occur either in the
subroutine (usually preferable, since the registers will be
saved for any call) or in the calling program, but they must
occur at the same program level. What you must NOT do is the
following:

THE STACK AND ITS APPLICATIONS 	PAGE 36

PUSH HL
CALL SUB

SUB POP HL

or:

CALL SUB
POP 	HL

SUB PUSH HL

In these examples, the SP gets confused because the PUSH
and POP do not occur at the same level. The first example
POPs the return address off the stack rather than the previous
contents of HL, and the second pushes HL onto the stack, so
that the program will "return" to the address specified by HL
rather than the calling location. Of course, these
programming techniques can be used if the programmer
understands what is happening and takes that into account when
writing the program, so that something he intends to happen
occurs. The point is that these are not proper procedures for
storing and retrieving registers.

Another use of PUSH and POP is simply to transfer data from
one register pair to another. The following two sequences of
instructions produce the same result:

PUSH DE
POP 	HL

and:

LD 	H,D
LD 	L,E

Both require two bytes, and, although the latter method
requires only 8 T cycles and the former 22, programmers are as
likely to use one method as the other. Using PUSH and POP
also allows data to be transferred to and from the index
registers, and it allows access to the flags for such purposes
as printing them.

If several registers are PUSHed at the beginning of a
subroutine, they must he POPped at the end in REVERSE order;
otherwise the data will not go back into the same registers.
The following sequence shows the correct procedure:

THE STACK AND ITS APPLICATIONS 	PAGE 37

SUB PUSH AF
PUSH BC
PUSH DE
PUSH HL

	

POP 	HL

	

POP 	DE
POP BC
POP AF
RET

None of the stack operations affects the condition codes
except for POP AF, which loads the flag register with an
entirely different set of conditions. Therefore, the values
of registers can be restored before a conditional operation,
as in the following sequence:

PUSH DE 	;save D (and E)
LD 	D,(TST) ;load D from TST
CP 	D 	;compare A to D
POP 	DE 	;restore DE to previous values
CALL Z,SUB ;call if compare equal

(In assembly code, anything following a semi-colon is taken to
be a comment.) This small portion of a pragram saves D and E
in the stack and then loads D from a location called TST.
This is compared to the accumulator, and then registers D and
E are popped back off the stack. The CALL is executed only if
the compare was equal, but by the time the CALL occurs, D and
E have been restored to their previous values.

Since all subroutines use the same stack area, any time a
RET is executed it will branch to the address at the top of
the stack, regardless of which program executed the last. CALL.
Assuming that SUB2 is a subroutine that ends in a RET (as all
subroutines do), the following program sequences are
identical:

SUB1
CALL SUB2
RET

and:

SUB1
JP SUB2

The first SUB1 sequence CALLS SUB2; SUB2 does its thing and
returns to SUB1; and SUB1 returns to the calling program.
The second SUB1 sequence ends by jumping to SUB2; when SUB2
returns, it goes back to the program that called SUB1.

THE STACK AND ITS APPLICATIONS 	PAGE 38

What happens if a program tries to call itself? 	Imagine
this:

5000 CALL 5000

Location 5000 contains the first byte of an instruction
that calls location 5000! When executed, 5003 (the return
address) is pushed onto the stack, the SP is decremented, and
the computer branches to 5000. Then 5003 is again pushed onto
the stack, and the process continues. This program will have
the effect of repeatedly pushing 5003 onto the stack, thus
destroying all of memory and causing the computer to hang
indefinitely. Actually, the process will continue until
location 5000 is bombed, and then the computer will repeatedly
execute the instructions represented by 50 (LD D,B) and 03
(INC BC).

Because the use of the stack is so flexible, you never need
to worry about where to store data temporarily. Just push it
onto the stack. Always make sure that you know where the
stack is located so that you don't use it for other data. The
best way to accomplish this is always to put a load stack
pointer instruction at the beginning of any program you write.
And don't forget that the computer also uses the stack during
subroutine calls and interrupts, so that you have to keep
PUSHes and POPs on the same levels.

MEMORY MAP

Before you can write an assembly-language program for the
TRS-80, you must know the organization of the TRS-80's memory
and how to use the various parts of it. Most TRS-80 owners
are familiar with the division of the memory into ROM
(read-only memory), dedicated input/output addresses, and RAM
(random access memory), as shown in the diagram on the
following page. 	In this chapter, we will examine each of
these three memory areas in detail.

The ROM contains the Level II Basic interpreter, as well as
the software for accessing the principal input/output devices
-- the keyboard, video display, and cassette recorder. The
main reason for placing software in ROM is so that you cannot
accidentally erase it.

The dedicated input/output addresses contain locations
where certain devices are interfaced to the TRS-80 through
MEMORY MAPPING. 	Only the keyboard, video display, line
printer, disk controller, and cassette recorder are connected
in this way. (The cassette recorder also uses port 255.)
Additional devices can be interfaced through I/O ports.

The RAM is where your programs and data must be located,
but many addresses at the bottom of RAM are reserved for
special purposes. 	In a non-disk Level II Basic system, 744

39

ADDRESS ADDRESS

0 OH

12287 2FFFH

12288 3000H

16383 3FFFH

16384 4000H

20479 4FFFH
20480 5000H

32767 7FFFH
32768 8000H

BFFFH
COOOH

05535 FFFFH

LEVEL II BASIC ROM
(LEVEL I ENDS AT 4095 = OFFFH)

DEDICATED I/O ADDRESSES

RAM

END OF 4 K RAM

END OF 16K RAM

END OF 32K RAM

END OF 48K RAM

49151
49152

DECIMAL HEXADECIMAL

Figure 2: Memory map

locations are reserved. When you connect a disk drive to the
TRS-80, the software needed to operate the disk must be loaded
off the system drive into low RAM. This area of RAM then
functions as an extension of the ROM, and if you accidentally
destroy it, you must reboot the system. The TRSDOS disk
operating system reserves over 5K, and Disk Basic requires an
additional 5K.

5.1 The Level II Basic ROM

The TRS-80 has an unusually large ROM for a microcomputer.
Most micros have just some kind of monitor or operating system
in ROM, containing only the software for accessing the primary
input/output devices. The TRS-80 has all that, but it also
has the Level II Basic interpreter, which is huge by
comparison. Level II Basic is an extremely complicated
assembly-language 	program, 	written 	by 	Microsoft.
Understanding how it works is beyond the scope of this book
and unnecessary. MosL of Lhe Level II interpreter is unusable
to assembly-language programs, although in chapter .15 we
discuss assembly-language subroutines for Basic programs.

The primary information we need to know about the ROM
concerns the input/output software. We may also be interested
in knowing the general organization of Level II Basic, and how
to find out more about it. The general organization of the
Level II ROM is as follows (all addresses are in hexa-
decimal):

40

0000
01D9
03E3
0458

- 01D8
- 03E2
- 0457
- 058C

MEMORY MAP 	PAGE 41

System initialization and I/O subroutines
Cassette subroutines
Keyboard driver
Video display driver

058D - 0673 Line-printer driver
0674 - 070A Initialization code
070B - 1607 Floating-point math
1608 - 164F Table of entry points for functions
1650 1820 Level II Basic reserved words
-1821 - 1899 Table of entry points for Level 	II commands
189A - 18C8 Unknown
18C9 - 18F6 Non-DOS error messages
18F7 - 191C Non-DOS initialization
191D - 1953 Messages
1936 - 2FFF Remaining Level 	II 	interpreter

The ROM contains an enormous number of subroutines, but few
of them are useful for assembly-language programs. Those that
are useful are summarized below. This list shows the entry
point (in hexadecimal), the registers containing parameters
for the subroutine, the registers used (destroyed), and the
operation of the subroutine. (Subroutines are always entered
by a CALL instruction.)

5.2 Keyboard Subroutines

002BH 	INKEY subroutine: scans the keyboard and returns
zero in A if no key is depressed, else returns a
character. Uses AF, DE.

0049H 	INPUT subroutine: scans the keyboard and waits for a
key to be depressed. Returns character in A.
Uses AF, DE.

0040H 	LINE INPUT subroutine: accepts an entire line of
input terminated by ENTER or BREAK. Displays
characters typed, recognizing control functions
(backspace, etc.). When called, HL => address of
buffer where text is to be put, B = maximum number
of characters in line. On exit, B = number of
characters typed, including terminator. C set if
line ends with BREAK. Uses AF, DE.

5.3 Video Display Subroutines

0033H 	DISPLAY subroutine: prints ASCII character in A
at current cursor position on video display. Cursor
located at 4020H. Uses AF, DE, IY.

MEMORY MAP 	PAGE 42

01C9H 	CLEAR SCREEN subroutine: Clears screen and homes
cursor. Uses AF.

28A7H 	TEXT PRINT subroutine: prints all text pointed to
by HL up to a carriage return (ENTER key = ODH) or
NULL (00) at current cursor position. Uses HL, AF.

5.4 Cassette Subroutines

0212H 	DEFINE DRIVE: selects cassette and turns motor on.
A=0 for cassette #1, or 1 for cassette #2. Uses AF.

01F8H 	CASSETTE OFF subroutine. Uses no parameters.

02878 	Write leader and sync byte. Uses AF, C.

02648 	Write byte in A to cassette.

0296H 	Read leader and sync byte: locates beginning of
program and positions for reading next bytes. Motor
keeps running. Uses AF.

0235H 	Read byte: next byte on cassette returned in A.
User must keep up with cassette speed of 500 baud.

Since all the standard TRS-80 tapes, such as Basic
programs, machine-language object programs, and Basic data
tapes, are written in special formats, you need additional
information to use the cassette. This subject is covered in
detail in chapter 14.

5.5 Miscellaneous I/O Subroutines

003BH 	LINE PRINT subroutine: prints byte in A on line
printer. On exit, Z is set if printer is ready.
Uses AF, DE.

0013H 	Inputs a byte from an input device. On entry, DE =>
DCB of riavir'a. 	nn exit, Z ig set if ready, 	Uses AF,

00188 	Output a byte to a device. On entry, A=output byte,
DE => DCB of device. On exit, Z is set if device is
ready. Uses AF.

0023H 	Output a control byte to an I/O device. On entry,
A = control byte, DE => DCB of device. On exit, Z is
set if device is ready, A = status. Uses AF.

MEMORY MAP 	PAGE 43

00608 	Delay loop in 14.66-microsecond increments.
BC = number of delay pulses. Uses AF, BC.

0066H 	NMI reset location: jumps here on non-maskable
interrupt. In effect, halt or reset.

5.6 RST vectors

You may recall from our discussion of the Z-80 instruction set
above that the RST instructions have the same effect as a CALL
to locations 0 to 56 in multiples of 8. It may appear that
you cannot use these instructions, because the area that they
call is in ROM. Actually, you can use most of them, because
calls to these locations are vectored out into low RAM
addresses. 	These addresses contain jumps to yet another
series of addresses that are automatically inserted there by
power on or reset. (A "vector" is simply a jump instruction.)
Nevertheless, all of the restart instructions are used
extensively by Level II Basic, so you must take this into
account when setting up your own routines. RST 0-32 are used
by Level II, and RST 40-56 by Disk Basic and DOS only. The
operation of RST 48 and RST 56 is too complicated to describe
in the summary here. 	The following table shows the vector
addresses and gives a brief description of the Basic
function:

RST 	RST 	Jumps

	

decimal hex 	to Vector Function

	

0 	OH 	(none) 	(none) Reboot system: power on
or reset.

	

8 	8H 	40008 	1C96H 	Byte at HL compared with
byte at top of stack. If
non-zero, SN error.

	

16 	10H 	4003H 	1D78H 	Increment HL and pass through
string, ignoring spaces or
carriage return. C is set if
next character numeric,
else C is reset.

	

24 	18H 	4006H 	1C9OH 	HL compared to DE. Z is set
if equal, C set if DE>HL.

	

32 	20H 	4009H 	25D9H 	If double-precision number
C is reset, else C is set.

	

40 	28H 	400CH 	4BA2H 	BREAK key vector: jumps
here if BREAK key is typed.

48 30H 400FH 44B4H
56 38H 4012H 4518H

MEMORY MAP 	PAGE 44

5.7 Level II Basic Commands

The Level zz gom map shown above does not go into the decoding
of Basic statements. If you are interested in this subject,
the following information will explain how to find out more
about it.

Each of the Level II Basic reserved words is represented
internally by a unique byte, called a "token", with a value
from 808 to Feu. When you type in a Basic program, only the
tokens are stored -- not the complete words you type.
Starting at location 16508 and extending to 18308 is a list of
all the reserved words, in numerical order of the tokens. The
first byte of each word is indicated by having bit 7 set,
which is not used in ASCII node. There are two tables of jump
addresses, located at I0088 - 164r8 and 1822a - 1899u, plus m
third area starting around 24u0u, that give the addresses
where each command is executed. If you figure all this out,
you will construct the following table, which is shown by
tokens, in alphabetical order rather than numerical:

ABS 	n9 0977 	GOsUa
AND 	o2 25Fo 	G0r0
uSC 	e6 2a0r 	IF
Arm 	E4 15eo 	zNuDY$
AUTO a7 2008 	Iwp
oDoL Fl 0xou Iweur
CB8$ F7 2alF 	ImSre
CINT Bs 0a7r 	Imc
CLEAR o8 1D7a 	KILL
CcOan a9 2Clr 	L8rT$
CLOSE A6 4185 	c:m
CLG 	84 01C9 	LET
CMm 	85 41,73 	LINE
COmT u3 loE& 	LIST
C0s 	El 1541 	LLIS?
Csovo aa 2or5 	cOao
CSmG s0 0uel 	LoC
CVo 	oO 415u 	D]F
CVI 	E6 4152 	LOG
CVS 	E7 4158 	ceeIe?
DATA 88 le05 	cSoT
nEp 	ao 415a 	nEm
oEFooL 9a lu09 	mamGm
ouaImr 99 lO03 	mzo$
oEFsmG 9a lC06 	muo$
uErucu 98 lE00 	pmz$
ooLsT8 a0 3Bn0 	mKS$
DIM 	8x 2600 	mxmo
Eozr 90 2E60 	NEW
uLGo 95 lF07 	m:Kt

01 luol
8o loC2
8F 2039
C9 019D
DB 2AEF
89 219a
C5 4190
DD 0e37
ax 4I91
F8 2a61
F3 3&03
8C 1F21
9C 41u3
a4 3e38
a5 2829
s7 4188
Ea 4164
8e 4167
oc 0809
AF 2067
ae 4197
C8 27C9

O 4I0a
ra 2a9a
ox 4170
EC 416a
oo 416o
a9 418E
aa 1849
87 22e6

READ Da 21uF
eom 93 la07
RESET 82 0138
RESTORE 90 1n9I
BmSmnE 9p lFxz
m8TOom 92 1uD3
mIGac$ F9 2a91
nmo 	on 14C9
uGo7 AC 419&
nOm 	88 18x3
Saou uo 41a0
SET 	83 0135
SGm 	o7 098u
SIN 	E2 1547
SUn 	oo 13O7
STEP co 2u01
Sroe 94 1oa9
sTn$ F4 2836
SrezmG$ C& 2a2F
SYSTEM no 03e2
TAB(BC 2137
?&m 	E3 15x8
r8Om CA ----
zzMm$ C7 4176
TO 	eo ----
TRoFr 97 1or8
1aUm 96 1or7
USING or 2Ceo
oSR 	Cl 27sE
uoL 	r5 2Ac5

MEMORY MAP PAGE 45

END 80 1DAE NOT CB 25C4 VARPTR CO 24E8
EOF E9 4161 ON Al 1F6C + CD 249F
ERL C2 24DD OPEN A2 4179 - CE 2532
ERR C3 24CF OR D3 25F7 * CF ----
ERROR 9E 1FF4 OUT AO 2AFB / DO
EXP EO 1439 PEEK E5 2CAA ** D1
FIELD A3 417C POINT C6 0132 > D4
FIX F2 0B26 POKE 81 2C131 = D5
FN BE 4155 POS DC 27F5 < D6
FOR 81 1CA1 PRINT B2 206F FB ----
FRE DA 27D4 PUT A5 4182 22 2866
GET A4 417F RANDOM 86 01D3 26 4194

. 2E 0E6C

** Indicates the up arrow key.

If you want to know more about the ROM, the best thing to
do is to get a disassembler program and look at a disassembled
listing of the ROM. A disassembler is the reverse of an
assembler, showing the machine instructions corresponding to
the program stored in memory.

One final word of caution about the ROM is in order: there
are different versions of the ROM that are and have been sold
by Radio Shack. All of the ROMs are functionally identical,
but exactly what the differences are and why different ROMs
are being sold are not known at the time of this writing.

5.8 Dedicated I/O Addresses

The area from 3000H to 3FFFH is used for direct-memory-access
(DMA) input/output devices. It is organized as follows:

3000 - 37DD
37E0

37E4

37E8
37EC - 37EF
3800 - 3880
3C00 - 3FFF

Unused at present
Disk drive select latch
(37DE, 37DF, 37E1-37E7 also used for disk)
Cassette drive select latch
(cassette also uses port. FF)
Line printer
Disk controller
Keyboard addressing
Video display memory

Since the keyboard and video display are so important for
the functioning of the TRS-80, their operation will be
explained in more detail.

MEMORY MAP PAGE 46

5.9 Keyboard Addressing

Locations 3800u - 3aFFB do not exist in the rnS-80'a memory.
When a location there is addressed, the computer actually
reads the keys of the keyboard. Each key depressed causes m
certain bit in a specific location to read ^l^ rather than
^0". The correspondence between the keys and the memory
locations is as follows:

MEMORY
ADDRESS

a/r
u I c z 4 » s r

381on

C.-.— 2. af—h—A~~~~~~

For example, if you type the "F^ key, bit 6 in location
3801 will be set, causing the value at 3801 ty reed 40a. a
keyboard-reading subroutine must simply check locations 3801
to 3840 to see if there is any non-zero value, and then decode
the bits into the proper letter, checking location 38808 to
see if the shift or control keys aze.pceesed. This may seem
like muou work, but it actually happens so fast that a
keyboard-deb0000e routine has become necessary to prevent

	

MEMORY MAP 	PAGE 47

accidental double reading of typed letters. 	The keyboard
debounce does nothing except insert a delay into the
key-reading process.

5.10 Video Display Memory

The video display memory occupies locations 3C00H - 3FFFH.
This is a 1K buffer that is mapped directly to the 1024
positions of the video display, starting in the upper-left
corner and extending 64 characters across each line for 16
lines. If you store a number in one of these locations, its
ASCII equivalent is displayed on the screen. (ASCII tables
are in the LEVEL II BASIC REFERENCE MANUAL, the EDITOR/ASSEM-
BLER REFERENCE MANUAL, and the TRSDOS & DISK BASIC REFERENCE
MANUAL.) Unless your TRS-80 has been modified to display
lower-case letters, bit 6 of the video display memory does not
exist.

If you store a value in video memory that has bit 7 set, it
indicates a graphics character. Graphics divide each cursor
position into six PIXELS. 	Bits 0-5 of the value stored
determine which pixels are set. These bits are mapped into
the graphics as follows:

BITS
	

7
	

6
	

5
	

4
	

3
	

2
	

1

PIXEL

GRAPHICS BLOCK

4: Graphics

5.11 The RAM

As we mentioned above, a minimum of 744 bytes of low RAM are
reserved for Level II Basic, and approximately 10K is used ,in
Disk Basic. All of youc programs and data must go elsewhere.
It is important to have an understanding of what is located in
these reserved addresses. 	Some of them are used by every
TRS-80 program, whereas others are used only by obscure Basic

MEMORY MAP 	PAGE 48

commands. 	Even adding Disk Basic to the system does not
complicate matters that much, for the DOS is loaded from
4400H, and all you need to know is that it functions as an
extension of the ROM, so you shouldn't destroy it. 	Different
disk operating systems use the memory immediately below this
area in different ways, some of which are incompatible with
other DOSs.

The data control blocks (DCBs) for the three primary I/O
devices of the TRS-80 are located immediately following the
jump vectors. These blocks are the keyboard, video display,
and line printer. The concept behind a DCB is very intelli-
gent, and the fact that it is in RAM is also important,
because it enables you to use different software from that in
the ROM. The organization of all DCBs is very similar:

Byte 1:
	

DCB type
Bytes 2-3:
	

driver address
Bytes 4-6: 	parameters used by the device
Bytes 7-8:
	

identifying letters

The "driver" for each device is the software that actually
stores or fetches data from it. 	By patching a different
address pointing to a different driver into these bytes, you
can use non-standard software, such as the keyboard-debounce
routine. 	When 	additional 	devices are added to 	the TRS-80,
they are often also 	interfaced through DCBs.

The 	following table shows the complete organization of low
RAM. 	All addresses are in 	hexadecimal. 	The 	functions 	of
addresses which are not indicated are unknown.

4000 	RST 8 	Jump vectors for RST instructions
4003 	RST 16
4006 	RST 24
4009 	RST 32
400C 	RST 40
400F 	RST 48
4012 	RST 56
4015 - 401C Keyboard DCB
4016 RUM driver address: 	03E3H
401B Device name KI 	("keyboard input")
401D - 4024 Video display DCB
401E ROM driver address: 	0458H
4020 Cursor location
4022 Cursor character
4023 Device name DO 	("display output")
4025 - 402C Line printer DCB
4026 ROM driver address 058DH
4028 Lines/page
4029 Line counter

MEMORY MAP 	PAGE 49

402B 	Device name PR ("printer")
402D 	Normal return to DOS
4030 	Error return to DOS
4036 - 403C 	Keyboard work area
403D 	Print-size flag (0=64 char, 8=32 char mode)
4040 	25-msec heartbeat interrupt
4041 - 4046 	TIME$ storage area
4041 	Time: seconds, minutes, hours
4044 	Date: year, day, month
4047 	Lowest location of usable memory
4049 	Highest location of usable memory
4050 	FDC interrupt vector
4052 	Communications interrupt vector
4054 - 405C 	Reserved
408E 	Entry point to USR routines
4093 	INP (input port) routine
4096 	OUT (output port) routine
4099 	1NKEY$ storage
409A 	Error code storage for RESUME
409B 	Printer-carriage position
409C 	Device-type flag: -1=tape, 0=video, 1=printer
409D 	PRINT# use
40A0 	Start-of-string space pointer
40A4 	Start-of-Basic program pointer
40A6 	Line-cursor position, used for TAB
40A7 	Input-buffer pointer
40AA - 40AC 	Seed for RND
40AF 	Number type flag (NTR): 2=integer,

3=string, 4=single, 8=double
4061 	Top of Basic memory pointer
4083 	String work-area pointer
40B5 	4005 	String work area
4006 	Memory size pointer
40DC 	Used by DIM
400E 	Used by PRINT USING
40DF 	System tape entry-point storage
40E1 	Auto flag: 0=not auto, else auto
40E2 	Line number
40E4 	Auto increment
40E6 	Encoded-statement pointer
40E8 	Pointer-to-stack pointer
40EA 	Used by RESUME
40EC 	Edit line number
40EE 	Used by RESUME
40F5 	Last line number executed
40F7 	Used by CUNT
40F9 	Pointer to end of Basic program

Also simple-variables pointer
40FB 	Arrays pointer
40FD - 4100 	Free space

MEMORY MAP 	PAGE 50

4101 - 411a 	Variable type declaration table (a_x)
2=iotegec, J=atciog, 4=siogle, 8=double

&lla zaOm flag: 0=ra0rF
4I10 - 4124 	 ritb table
4127 - 4128 	uritbex table
4130 	Line-number work area pointer
4152 - 41A5 	DOS entry points
4152 	CVI
4155 	FN
4158 	CnG
4l5o 	DCF
415E 	CVo
4161 	O8F
4164 	cUC
4167 	L0r
4l6u 	moI$
4lho 	MKS$
4170 	mKD$
4173 	Cmu
4176 	7IME$
4179 	0rom
4l7C 	rz8co
4l7F 	GET
4182 	PUT
4185 	CLOSE
4188 	LOAD
4l0a 	muaGB
418E 	muMu
4191 	KILL
4194 	s
@I97 	LSur
4l9A 	nSEz
4l90 	ImSTn
4la0 	SAVE
4lA3 	LINE
41E8 - 42E7 	Input-buffer area
4288 	System stack pointer
42E8 	Always zero
4289 	Start of Basic grogram

(Disk Basic programs start at 68oA)

While Basic programs start at location 42o98, pressing the
reset button nausea material to be written into locations
4330a through 4348B, thus making 4349a the first free location
for assembly language programs. When running a Disk system,
7000O is the first free location used neither by Disk Basic
nor by the TaSo0S utilities.

USING THE
EDITOR/ASSEMBLER

PROGRAM

When you think you are finally beginning to understand the
machine instructions for the TRS-80 and are ready to try
writing a program to do something, then you have to consider
the problem of getting the instructions into the computer.
This is where the Editor/Assembler program comes into play.

The Editor/Assembler program was one of the first software
packages sold by Radio Shack. 	Developed by Microsoft, the
company that wrote Level II Basic, the original program came
with a very helpful book called the TRS-80 EDITOR/ASSEMBLER
USER INSTRUCTION MANUAL (catalog number 26-2002). This book
is perhaps the most important book anyone planning to write
assembly-language programs for the TRS-80 should read. It is
not easy reading, however, and most beginners will get
confused by its rather clumsy organization and lack of
sufficient introductory explanatory material.

One drawback of the original Editor/Assembler program,
which we will henceforth refer to by its shorthand name
EDTASM, was that it allowed programs to be saved only on the
cassette-tape recorder. This worked fine, but it took a long
time to read tapes into the computer. A revised version of
EDTASM has been available with Apparat's NEWDOS PLUS which
extends the input-output routines so that they work with
either cassette or disk. This program has a number of other
improvements over the original. Microsoft has also introduced
a similar revision called Editor/Assembler plus, and many

51

USING THE EDITOR/ASSEMBLER PROGRAM 	PAGE 52

other assemblers are now available. Whether you have the tape
or disk version, however, the EDTASM program is identical in
all other respects.

When you write an assembly-language program, you have in
mind a specific series of machine instructions that you want
to have loaded into the computer at some particular memory
address, and then executed. There are actually several steps
involved in this process. Let us try to clarify these steps
and introduce some terminology.

The machine instructions to be executed must be written
down in some kind of notation. They are indicated
individually by names called "mnemonics" (pronounced
"nem-on-iks"). 	The mnemonics used by the EDTASM program are
the Zilog names introduced above in chapter 3. 	There are
other sets of mnemonics that have been designed for the Z-80
(mostly as extensions of 8080 mnemonics) that are rather
different from the Zilog notation, but we will not mention
them because we won't be using them.

The starting location in memory at which we want to have
the program assembled is called the "origin" of the program.
This is indicated to the assembler by the ORG
pseudo-operation. ORG is called a "pseudo-operation" because
it is not a machine instruction. There are several other
pseudo-operations, such as the END statement, which indicates
the end of the program. The function of a pseudo-op is to
indicate something to the assembler other than a machine
instruction.

The function of the assembler is to translate the mnemonics
that indicate your program into the numerical values that
represent the operations you have specified. Each instruction
is denoted by a unique value for a byte or series of bytes.
Z-80 instructions may be 1 to 4 bytes long. For example, 04
indicates "INC B" 	(increment the B register), and 3E, the
first byte of a 2-byte instruction, indicates "LD A,N" (load A
with the value specified in the next byte). These values are
referred to as "machine code", and a particular sequence of
instructions that perform some task is a program. The
important point here is that every instruction corresponds to
a number, and the assembler's function is to translate your
mnemonics into those numbers.

The numbers that represent instructions are only one kind
of numerical value handled by the assembler. 	Others include
data values and addresses. Numerical data values are
self-defining. "3" indicates the value 3. The only possible
confusion is the number system employed. EDTASM's convention
is that all numbers are decimal unless followed by the letters

USING THE EDITOR/ASSEMBLER PROGRAM 	PAGE 53

H or 0, in which case they are either hexadecimal (base 16) or
octal (base 8). 	"30" indicates the value 30, but "30H"
indicates 30 hexadecimal, which is 48 decimal. Addresses and
machine code are always printed in hexadecimal form by the
assembler.

Addresses, which are always two-byte values, indicate the
memory locations at which either the machine instructions or
data they employ are located. 	When the program is being
assembled, an internal number called the "location counter" is
set equal to the value you specify as the origin of the
program. 	As each instruction is assembled, the location
counter is incremented by the number of, bytes in 	the
instruction. 	You can refer to the location counter by the
symbol "$", to which you can add or subtract values. 	For
example, the instruction "JP $+5" indicates a jump to the
location 5 bytes ahead of the value of the location counter at
the beginning of the JP instruction. When using the location
counter, it is necessary to count the number of bytes
corresponding to each instruction between the "$" and the
location referred to. You must always jump to the first byte
of an instruction. 	Otherwise, a disastrous error could
occur.

Addresses are usually referred to by "labels", which are
symbolic names of one to six letters, written at the beginning
of a program line. When you are writing a program, you do not
normally think about such problems as how many bytes fit
between the area where you are currently writing down your
instructions and something you are referring to. When you use
a label, the assembler computes the appropriate value
corresponding to the label and substitutes it for every
reference to it within the program.

When your program is written out in mnemonic form, it is
called a "source program". Once it has been assembled into
machine code, it is called an "object program". 	The
assembler's function is to translate your source program into
an object program, and then to store the results either on
cassette or disk, from which it can be read into memory. The
assembler can also store your source program in symbolic form
on cassette or disk, and read it back in later. What we need
to understand here is that reading the program into memory is
another step, called "loading", which must be done after the
assembly is finished. This will be done either with the
SYSTEM command in Basic if the program is stored on cassette,
or with the LOAD or RUN commands in TRSDOS if stored on disk.

USING THE EDITOR/ASSEMBLER PROGRAM 	PAGE 54

6.1 Editor/Assembler Commands

Assembling the program is only half the job of the EDTASM
program. 	The other half of its name is "Editor". This means
that EDTASM also contains a text editor, which you use when
typing your program into the computer. The Editor is simple
and easy to use. All commands are single letters. To type in
your program, you use the I (Insert) command, unless you are
replacing an existing line, in which case you use R (Replace).
I works very much like the AUTO command in Basic. Every line
in the program has a line number, but you don't have to type
the number. 	It is printed automatically. The default first
line number is 100, and 10 is the default increment between
each line, enabling you to insert up to 9 lines between each
existing line. If you need to insert more, you must first
renumber the lines with the N (Number) command, which takes no
more than about a second. While typing the program, the right
arrow can be used as a Tab key, which jumps in groups of eight
spaces.

A group of several successive lines can be indicated by
separating the first and last numbers by a colon. 	This is
necessary with several commands, such as D (Delete), P
(Print), or H (Hardcopy). 	("Hardcopy" means "line print",
while "print" goes to the video display.) The symbols "#" and
"*" can be used in place of the first and last lines, and "."
in place of the current line. For example, D100:120 deletes
lines 100 through 120. P#:* prints the entire program on the
video display.

Once a line has been typed in, you can modify it with the E
(Edit) command. 	Edit works exactly the same way as the EDIT
command in Level II Basic. In addition to Edit, there is an F
(Find) command that searches through the entire program for a
particular string. If you want to change each occurrence of
it, however, you must do so one-at-a-time.

An entire source program can be saved on tape, or in the
revised EDTASM, on disk. 	This is done by the W (Write)
command, while reading in a previously-stored program is done
by L (Load).

Finally, there is the most important command, A (Assemble).
A has several options, which can be specified in any
combination, separated by slashes. The first string following
A (and a space) is the name of the object program (this is
used only if the program is written to cassette). 	Other
options are NO (no object tape or file written), NS (no symbol
table printed), LP (line print: assembly printed on line
printer rather than video display), NL (no listing: assembles
without printing), and WE (wait on error: pauses whenever an

USING THE EDITOR/ASSEMBLER PROGRAM 	PAGE 55

error occurs). 	For example, to assemble your program you
might specify: "A PROG/WE/NS" meaning "assemble the program
now typed into memory, wait if any error occurs, and don't
print a symbol table at the end."

There is one other command: B (Basic), which returns you
to Level II Basic, or to TRSDOS if you have a disk.

During the assembly process, your source program is stored
in memory, and the symbol table, which consists of all the
labels you have used and the addresses where they occur, is
stored backwards starting at the top end of memory. The most
discouraging error you can get is "SYMBOL TABLE OVERFLOW",
which means that you don't have enough memory to contain the
program and assemble it. Before giving up, however, you can
eliminate your comments and try again.

When you are typing in a program, each line has four
different fields, three of which are optional. The format is
as follows:

(LABEL) 	OPCODE 	(OPERAND(S)) 	(;COMMENTS)

Optional fields are indicated as being enclosed in
parentheses. Each field is separated by either a space, or
preferably by the right-arrow key, which aligns the fields
vertically. The comments must be preceded by a semi-colon,
and an entire line may be comments if it begins with a
semi-colon. The LABEL is a symbol whose value is set equal to
the location counter when the line is assembled. The OPCODE
is the mnemonic for the instruction. The OPERAND(S) indicate
the registers or values used by the opcode, but not all
opcodes have operands. COMMENTS are for your own benefit, so
that you can remember what you are doing.

6.2 Writing a Program

Now that we have described the Editor, let us try to go over
the process of writing a program. In the EDTASM manual there
is an example program that consists of just three steps:
first, it fills the entire video screen with a graphics block.
Second, it waits a few seconds to leave the screen "whited
out". Finally, it returns to Basic or TRSDOS. 	We will go
over this program step-by-step, and explain what it does and
how it does it. The program is as follows:

00100 	ORG 	7000H
00110 VIDEO EQU 3CO0H
00120 	START 	LD 	HL,VIDEO 	;SOURCE ADDRESS
00130 	LD 	DE,VIDE0+1 	;DEST. ADDRESS

USING THE EDITOR/ASSEMBLER PROGRAM 	PAGE 56

00140 LD BC,400H ;BYTE COUNT
00150 LD (HL),OBFH ;GRAPHICS BYTE
00160 LDIR ;WRITE OUT SCREEN
00170 ;DELAY LOOP TO KEEP WHITED-OUT SCREEN ON
00180 LD B,5
00190 LP1 LD HL,OFFFFH ;VALUE TO DECREMENT
00200 LP2 DEC HL
00210 LD A,H
00220 OR L ;HL=O?
00230 JP NZ,LP2 ;IF NO DEC AGAIN
00240 DJNZ LP1 ;DEC.B--B=O?
00250 JP OH ;RETURN TO BASIC
00260 END START
00270 <BREAK>

This listing is taken directly from the EDTASM User's
Manual. The only changes we have made are to name the first
location in the program "START", to include this name on the
END statement, and to change the origin of the program to
7000H so that it will work with both cassette and disk
systems. (The reason for this is explained below.) 	The
comments are those that are in the manual.

The video display is a memory-mapped output device that
automatically displays whatever characters are placed in
locations 3C00 to 3FFF hexadecimal (15360 to 16383). 	The
character whose value is OBF hexadecimal (191) is a totally
white graphics symbol. If you place this character in each of
the locations 3C00 to 3FFF, you will "white-out" the screen.
This could be done by the following Basic program:

10 FOR 1=15360 TO 16383
20 POKE 1,191
30 NEXT I

One way of performing these operations in machine language
would be as follows:

00100 	LD 	HL,15360 	;first loc. of screen
00110 	LD 	BC,1024 	;chars. on screen
00120 	LD 	D,191 	;graphics byte to D
00130 	LOOP 	LD 	(HL),D 	;store D in memory
00140 	INC 	HL 	;point to next loc.
00150 	DEC 	BC 	;decrement count
00160 	LD 	A,B 	;BC=O?
00170 	OR 	C
00180 	JR 	NZ,LOOP 	;if non-zero, continue

The first tnree instructions load various registers with
initial values, but each of the values means something quite
different. 	HL is 15360, the first location of the video

USING THE EDITOR/ASSEMBLER PROGRAM 	PAGE 57

memory. BC is 1024, a count of the number of bytes on the
screen. 	D is 191, the graphics byte that we want to display.
LD (HL),D means that the value in register D is stored in the
location whose address is in the HL register pair. (We used
register D rather than A for this purpose, because A is being
used later in the program, and its value would be destroyed.)
Following this instruction, we increment HL, so that we point
to the next location in video memory, and we also decrement
BC, so that our count is decreased. Whenever a register pair
contains an address of some memory location, we say that it
"points to" that location. There are many instructions that
load or store a byte in the accumulator using a register pair
as a pointer. When this occurs, the register pair is enclosed
in parentheses.

Now comes a slightly more complicated portion of the
program. 	We want to know if BC is zero yet, for if it is we
are finished. However, there is no Z-80 instruction that
tests to see if a double register is zero. We must therefore
use a group of instructions. "LD A,B" loads the accumulator
with the contents of the B register. 	Then we perform a
logical OR operation on A with the contents of C. 	(Why
couldn't we use B? Because you can do arithmetic and logical
operations only in A, or HL for 2-byte operations.) OR looks
at the value of each bit in each register, and if either of
them is 1, the result is then a 1. Thus, A will be zero only
if both B and C are zero. This type of "programming quickie"
takes a long time to figure out the first time you do it, but
can be used thereafter without your having to think it through
again. The final instruction, "JR NZ,LOOP",- jumps to LOOP
only if A is non-zero, repeating the process until the entire
video display is blanked out.

If you now look at the original program, you will see that
the above method was not used. Instead, the program used four
"LD" instructions and an "LDIR". The first statement, "VIDEO
EQU 3CO0H", means that the value of 3C0OH (15360) will be
substituted for any occurrence of the symbol VIDEO; 3C01H
(15361) is substituted for "VIDE0+1". EQU is another
pseudo-operation.

The instructions following the EQU are all in preparation
for the LDIR at the end. 	LDIR is one of the fanciest
instructions on any microcomputer. It is a block transfer
which uses HL as the source pointer, DE as the destination
pointer, and BC as the count. When executed, it does all of
the following: 	load the location pointed to by DE with the
value of the location pointed to by HL (in other words, copy
the value of (HL) to (DE)), and decrement BC. If BC is
non-zero, both HL and DE are incremented and the process is
repeated until BC is zero. LDIR is normally thought of as

USING THE EDITOR/ASSEMBLER PROGRAM 	PAGE 58

moving one block of data to another block, but here the two
blocks are separated by only one byte. That is why it is
necessary to have the "LD (HL),OBFH" before LDIR. 	What it
does is to load 3C00 with the value OBFH, so that when LDIR
begins (HL) contains that value. Once stored in the next
location and HL and DE are incremented, HL will continue to
point to a location containing OBFH.

The next portion of the example contains the delay loop. A
delay loop is usually implemented by simply loading a value
into a register and decrementing it until it is zero. If you
figure out how long it takes each instruction in the loop to
excute (a few microseconds) and multiply this by the count,
you can compute the delay time. In the actual program, there
are two delay loops, one inside the other. One of the loops
uses the HL register pair and the other the single register B.
The loops include lines 180 through 240 in the first listing
above.

The inner loop (lines 200-230) uses the same method we
described above for testing whether the value in HL is zero:
A is loaded from H, and L is ORed to A. If the result is
non-zero, the decrementing continues. The original value in
HL is FFFF (65535), the maximum value that can be contained in
a register. It is necessary to indicate this as "OFFFFH",
because the assembler requires any hexadecimal number
beginning with a letter (A-F) to be preceded by a zero to
distinguish it from a symbol. This loop delays as long as
possible. (For those of you who want to know exactly how long
this is, it is computed as follows: "DEC HL" requires 6 T
states (basic clock periods), "LD A,H" requires 4, "OR L" 4,
and "JP NZ,LP2" 10. 	This is a total of 24 T states. The
basic clock frequency of the TRS-80 is 1.77 MHz (563
nanoseconds), so the total time for one occurrence of this
loop is 13512 nanoseconds. 	65535 occurrences takes about
.88556 seconds.)

The outer loop uses the B register, and the decrementing is
done with the DJNZ instruction, which both decrements B and
jumps to the location named LP1 if it is non-zero. 	While we
are discussing this loop, we should notice that the previous
JP (jump) instruction could be replaced by a JR (jump
relative). 	This would save one byte of memory used by the
program, although the instruction takes slightly longer to
execute (12 T states instead of 10). In general, it is better
to use jump relatives (when possible) rather than jumps,
because memory is more likely to be the limiting factor than
speed.

The final instruction in the program, "JP 0", jumps to
location zero, which re-boots TRSDOS or Level II Basic. 	This

USING THE EDITOR/ASSEMBLER PROGRAM 	PAGE 59

step may not seem important, but it actually is. You must
always consider what is supposed to happen when your program
is finished, and if you don't know what to do, then you should
probably re-boot the system as this program does.

The last line of the program, END, has the symbol START in
the operand field. This is the first instruction in the
program that is to be executed, which is in line 120. You
should always indicate a starting symbol on the END statement,
since this will be required when the file is stored on disk or
tape. In TRSDOS, you can simply say "RUN PROG" and the
program will execute, and when using the SYSTEM command in
Lev'el II Basic you can just type "/<ENTER>" and it will run;
otherwise, you have to give the starting address in decimal.

Once the program has been typed into the computer, it is
time to assemble it. We could use a command like "A PROG/WE"
for this purpose. "PROG" is the name of the program that will
be written on cassette. 	(If you have the disk version of
EDTASM, you would be asked whether you wanted the program
written on cassette or disk here.) 	"WE" is the "wait on
error" option, which is always a good thing to use. 	The
assembler's output will appear as follows:

00100
00110

21003C 00120
11013C 00130
010004 00140
368F 00150
EDBO 00160

00170
0605 00180
21FFFF 00190
2B 00200
7C 00210
B5 00220
021270 00230
10F5 00240
030000 00250

00260
TOTAL ERRORS

*A PROG/WE
7000
3C00
7000
7003
7006
7009
7008

700D
700F
7012
7013
7014
7015
7018
701A
7000
00000

ORG 	70005
VIDEO EQU 	3C00H
START LD 	HL,VIDEO 	;SOURCE ADR.

LD 	DE,VIDEO4-1 ;DEST. ADDRESS
LD 	BC,400H 	;BYTE COUNT
LD 	(HL),OBFH 	;GRAPHICS BYTE
LDIR 	;WRITE OUT SCREEN

;DELAY LOOP TO KEEP WHITED-OUT SCREEN ON
LD 	B,5

LP1 	LD 	HL,OFFFFH 	;VALUE TO DEC
LP2 	DEC 	HL

LD 	A,H
OR 	L 	;HL=O?
JP 	NZ,LP2 	;NO? DEC AGAIN
DJNZ 	LP1 	;DEC.B--B=O?
JP 	OH 	;JUMP TO BASIC
END 	START

LP2 	7012 	<This is the symbol table>
LP1 	700F
VIDEO 	3C00
START 	7000
READY CASSETTE 	<Load cassette tape, set to RECORD>
<ENTER>

USING THE EDITOR/ASSEMBLER PROGRAM 	PAGE 60

The hexadecimal numbers in the first column on the left
show either the value of the location counter when that
instruction is being assembled, or the value of the symbol
defined or referred to there. The next column, which varies
from one to three bytes (two to six characters) in our
example, shows the actual machine code. From this point on
(in each line), the listing is identical to our source
program. 	At the end, the assembler tells us how many errors
we made, and then prints the symbol table in reverse order of
the definition of the symbols. 	Finally, the program is
recorded on cassette tape. (If we were using disk, this would
happen automatically without our having to do anything here.)
The "*" at the end is the assembler's prompt fo'r an additional
command.

This program is a good introduction to the use of the
Editor/Assembler, but it really doesn't do anything useful for
us. In the chapters below we will concentrate on more
meaningful applications of assembly-language programming.

READING AND
PRINTING NUMBERS

Now that we have some understanding of how a program is
written in assembly language, and we know how to use the
TRS-80 ROM subroutines to read the keyboard and print a
character on the video display, we come to the practical
subject of writing a program to do something useful. At this
point we encounter a number of new complexities that must be
reckoned with. Many of the things that we can take for
granted when programming in Basic cannot be done so easily in
machine language.

Foremost among these is number conversions. When we type
in a number at the keyboard -- say an easy number like 1000 --
we are typing a string of decimal digits. The computer
receives these one at a time, and has no particular reason for
associating them and considering them as one number, unless we
tell it how to. Furthermore, the digits that we type are
received by the machine in ASCII format. If we want to use
the number they represent in computations, we must convert
these digits into one hexadecimal value. Once we have done
our computations, we will probably want to display any answers
that we produce in decimal rather than hexadecimal form; but
to print any number requires that we convert the digits to
ASCII form and print them one at a time.

Coping with these problems is, in a nutshell, the subject
of this chapter. Fortunately, we are not the only people who
have ever had to struggle with them, and there are a number of

61

READING AND PRINTING NUMBERS 	PAGE 62

standard solutions that can be used. Our goal is to be able
to have you get a number into the computer, where you can
operate on it, and back out, where you can see the result.

Let us clarify first that there are many kinds of numbers
employed in a computer. Level II Basic computes with three:
single- and double-precision floating-point numbers, and
integers. 	We will restrict our consideration in this chapter
to integers, specifically those used by Level II, in which the
total amount can be contained in a two-byte word or register
pair (such as BC, DE, or HL). 	These numbers have no
fractional values and have a maximum range of -32768 to
+32767, or an absolute value of 0 to 65535.

When we consider a number in a two-byte word, it is stored
in hexadecimal form. All such numbers are actually stored
"backwards" in memory but "correctly" inside any register pair
that contains them. This means that a value like 10238 is
actually stored as 2310 inside memory. This is just a quirk
of the Z-80 that is preserved for compatibility with the 8080
and 8008, and it really makes no difference except if we go
hunting through memory one byte at a time to find a number.

In this chapter, we will consider only three problems:
inputting a hexadecimal number, and printing a number in
hexadecimal or decimal form. These are difficult enough for
beginners. In later chapters we will consider some of the
problems involved in computing with other kinds of numbers.

7.1 Printing a Number in Hexadecimal Form

Suppose that we want to display the hexadecimal value of a
single byte on the video screen. A byte requires exactly two
hexadecimal digits. 	We must convert these digits to ASCII
form and print them one at a time. To see what we have to do
here, it is convenient to refer to a chart showing the
relationship between hexadecimal values and ASCII graphics.
Appendix B gives a complete chart of the ASCII values, but we
will reproduce the relevant portions of it here. 	In reading
this chart, the numbers at the top show the most-significant
hexadecimal digit and the numbers going down the left side the
least-significant digit.

READING AND PRINTING NUMBERS

2 	3 	4 	5
0 	space 	0 @ P
1 	! 	1 A Q
2 	2 B R
3 	# 	3 C S
4 	$ 	4 D T
5 	% 	5 E U
6 		6 F V
7 	, 	7 G W
8 	(8 H X
9) 	9 I Y
A 	* 	:
B 	+ 	;
C 	, 	<
D 	- 	=
E 	

' 	
>

F 	'/ 	?

J
K
L
M
N
0

Z
up arrow

down arrow
left arrow
right arrow

cursor

The 16 possible hexadecimal digits are referred to

As we approach this problem, let us consider the machine
operations we will need. 	To display the first hexadecimal
digit, we have to move the leftmost 4 bits in the byte (0-3)
over to the rightmost 4 bits (4-7). This can be done by
either shifting or rotating the byte four times. 	There are
many different Z-80 instructions that might be used for this
purpose, but the best ones to use are RRCA or RRA, because
they are faster than some of the others and require only one
byte. RRCA rotates the accumulator right one bit, with the
bit shifted off the end into both the carry and bit O. The
fact that it is a rotate instruction is irrelevant for our
purpose, but it doesn't matter, because we are going to ignore
bits 0-3 when we are done.

Once the proper value is moved into bits 4-7, we have to
get rid of whatever remains in bits 0-3. An AND instruction
is needed here. AND takes two bytes, one in A and the other
either in another register or in a memory location, and
compares them bit-by-bit. Only if a 1 exists in each of the
two bytes is it kept in the result. 	AND OFH preserves the

PAGE 63

by the
characters '0' through '9' and 'A' through 'F'. 	We can see
that these are in two separate portions of the chart. and,
fortunately, they are in a logical ascending order. 	For
numerical digits, the value of the digit (0-9) plus 30H
produces the ASCII representation. For the letters A-F, we
have to add not 30H, but 37H. The simplest way of producing
an ASCII digit is first to add 30H to the hexadecimal digit,
then test to see whether the result is higher than 39H, and if
so, add 7. Once this is done, we have to perform the same
operation on the other 4-bit hexadecimal digit in the byte.

READING AND PRINTING NUMBERS 	PAGE 64

rightmost four bits, because OFH (15) is the hexadecimal
equivalent of 00001111 binary, which has ones in the four
right bits.

A complete ASCII display of the hexadecimal value of a byte
is accomplished in the subroutine shown below. It is assumed
that you have appropriately positioned the cursor on the video
display, and that the byte you want to display is in A. DISP
calls the ROM subroutine to display a byte (see Chapter 5).

;subroutine to print hex value of byte on video display
HEX 	PUSH 	AF 	;save byte

RRCA 	;shift
RRCA 	;bits 0-3
RRCA 	;into:
RRCA 	;bits 4-7
CALL 	HEX2 	fist digit
POP 	AF 	;bits 4-7

HEX2 	AND 	OFH 	;zap 0-3
ADD 	A,30H 	;0 to 9
CP 	3AH 	;if <3A
JR 	C,DISP ;display
ADD 	A,7 	;A to F

DISP 	CALL 	33H 	;display
RET 	;done

The subroutine ends by falling through to DISP, which
returns to the Calling program.

This routine is adequate for displaying a single byte, but
what about larger values? 	For hexadecimal numbers, the
solution is easy, because all you have to do is load each
byte, one at a time, and call HEX. A subroutine to print the
2-byte value contained in the HL register pair is shown
below:

;display HL in hex on video display
PHLHEX LD 	A,H 	;first H

CALL 	HEX
LD 	A,L 	;then L
JP 	HEX

The jump at the end could be eliminated by physically
locating this subroutine immediately before HEX, as we placed
HEX before DISP above. 	Factors like this should always be
taken into account when considering where to locate
subroutines in memory.

READING AND PRINTING NUMBERS 	PAGE 65

7.2 Printing a Number in Decimal Form

Printing the value of a number in decimal form is a totally
different kind of problem, because there is no convenient
relationship between decimal digits and the bit positions they
occupy. Since a byte can have a value only from 0 to 15,
there is no real necessity to have a routine that displays a
single byte in decimal form; but a routine to display a 2-byte
word in decimal form is quite necessary. As we mentioned
above, a 2-byte word can have a value either from -32768 to
+32767 or from 0 to 65535, depending on whether we consider
the first bit to be a sign. In the following discussion we
will implement the latter method.

In order to display a 2-byte value, we need first to
display the ten-thousands digit, then the thousands, hundreds,
tens, and ones digits. This amounts to five basic steps.
Rather than duplicate the code for each step five times, we
will seek a method that involves one loop that is executed
five times with different data. The basic method is to start
with our number (for example, 28672) and subtract 10000 from
it. If the result is positive (18672), we increment a counter
and subtract 10000 again (yielding 8672). When the result is
finally negative (-1328), we display the value of the counter
(2, the ten-thousands digit) and add back 10000 (8672 again).
Then we start the process over again with 1000, and continue
until we have gone through all five digits. 	The following
subroutine implements this process using register IX as a
pointer to the decimal digits, which are contained in a table
called DECTBL:

;subroutine to print a 2-byte
;number in decimal form (0-65535)
PDEC 	LD 	IX,DECTBL ;IX = pointer
PDEC1 	XOR 	A 	;zero A

LD 	B,(IX+1) 	;BC = decimal
LD 	C,(IX) 	;digit
OR 	A 	;zap carry

PDEC2 	SBC 	HL,BC 	;subtract BC
JR 	C,PDEC3 	;digit done
INC 	A 	;else increment A
JR 	PDEC2 	;continue

PDEC3 	ADD 	BL,BC 	;add back
ADD 	A,30H 	;'0' to '9'
CALL DISP 	;display
LD 	A,C 	;if Cl,=
CP 	1 	;done
RET 	Z
INC 	IX 	;else increment.
INC 	IX 	;IX twice
JR 	PDEC1 	;digit

READING AND PRINTING NUMBERS 	PAGE 66

DECTBL DEFW 10000
DEFW 1000
DEFW 100
DEFW 10
DEFW 1

;table

This subroutine assumes that the value to be printed is in
HL wnen it is called. Note that IX points to the decimal
digits, while BC actually contains their values. A is used
for the counter that is incremented each time the subtraction
yields a positive result. 	Since we are dealing only with
decimal digits, converting to ASCII requires just adding 30H.
IX' must be incremented twice, because each of the values in
the decimal table DECTBL are stored in 2 bytes. This routine
prints leading zeros, and it destroys the previous values of
A, HL, DE, and IX.

7.3 Inputting a Number in Hexadecimal Form

To input hexadecimal digits that represent a single number, we
have a problem similar to what we faced before, but in
reverse. The keyboard reads one digit at a time. This digit
represents a 4-bit quantity inside the number we are creating.
We can either automatically wait to receive four digits, or
more preferably wait for a special character such as ENTER to
signify that the number is finished.

The following subroutine reads the keyboard and builds a
hexadecimal number in the HL register pair, waiting for ENTER
to terminate the number. If we do not type four digits, zeros
will occupy the unfilled positions; and if we type more than
four, only the last four will be kept. 	Each digit is
displayed as it is typed.

;subroutine to read a hexadecimal
;number from the keyboard into HL
INPUT 	LD 	HL,0 	;clear HL
INPUT1 CALL KEYIN 	;get digit

CP 	13 	;ENTER?
RET 	Z 	;if cn t done
CALL DISP 	;else disp
CP 	'0' 	;if < '0',
JR C,INPUT1 ;ignore
CP 	3AH 	;if > '9',
JR 	C,STRIP 	;'0' to '9'
CP 	'A' 	;if < 'A',
JR C,INPUT1 ;ignore
CP 	'G' 	;if >= 'G',
JR 	NC,INPUTl ;ignore
SUB 	7 	;A-F: 3A-3F

READING AND PRINTING NUMBERS 	PAGE 67

STRIP 	AND 	15 	;zap bts 0-3
ADD 	HL,HL 	;shift HL
ADD 	HL,HL 	;left 4 bits
ADD 	HL,HL 	;very, very
ADD HL,HL ;slowly
LD 	D,0 	;zero D
LD 	E,A 	;move A to E
ADD 	HL,DE 	;add digit.
JR 	INPUT1 	;next digit

KEYIN 	CALL 49H 	;ROM keyboard routine
RET 	;(see chapter 5)

While this subroutine reads and displays +any character
typed at the keyboard (except ENTER), the character will be
used only if it is a legitimate hexadecimal digit -- '0' to
'9' or 'A' to 'F'. This is insured by the series of compares
following INPUT1. If the character is an 'A' to 'F', 7 is
subtracted from the ASCII value, thus creating 3A to 3F. Then
the left four bits are masked out (at STRIP). At this point,
the present contents of HL are shifted left four bits, by
being added to themselves four times in succession. 	This is
an efficient way to do it, and the ADD HL,HL instruction takes
only one byte. Then the number we have inputed, presently
residing in A, is moved to DE; but since it is only one byte,
it is put into E, and D is cleared. Finally, DE is added to
HL, and the subroutine goes to get the next digit. Note that
the previous contents of DE are lost in this process.

7.4 A Sample Program

The following program reads a hexadecimal number from the
keyboard and prints it in decimal form. It is an endless
loop, always looking for a new number after printing the old
one, so you will have to hit. RESET to stop it. You can type
gibberish, but the program will accept only legitimate digits.
The number is also displayed in hexadecimal form. You must
hit ENTER after typing the number.

ORG 	7000H
START 	LD 	A,1CH 	;home cursor

CALL DISP
LD 	A,IFH 	;clear video
CALL DISP
LD 	A,OEH 	;on cursor
CALL DISP

NEXT 	CALL INPUT 	;get number
CALL SPACE 	;print space
CALL PHLHEX 	;hex display
CALL SPACE
CALL PDEC 	;decimal

READING AND PRINTING NUMBERS 	PAGE 68

	

LD 	A, 13 	;print CR
CALL oISe
Ju NEXT

	

GexCO Lo 	a,' '
Ja DI8p

;cnpy e8La8X Ueca
;copy auu here
;copy Po8C here
;oopy INPUT here

ORGANIZING ARRAYS
AND TABLES

8.1 Arrays

One of the most important principles of writing good programs
is to organize data items so that they can easily be accessed
for whatever purposes they are to be used. This chapter will
be devoted to methods of organizing tables and arrays so that
they can be searched or processed easily by the Z-80.

An ARRAY is the same thing that a SUBSCRIPTED VARIABLE in
Basic is. It is a group of items organized under a single
heading, because the items usually have something in common
that makes it useful to consider them as a group. Arrays may
have several DIMENSIONS. A one-dimensional array is simply a
LIST. A two-dimensional array is usually thought of as being
organized into columns and rows, like a matrix, and a
three-dimensional array is a group of matrices.

When using the TRS-80, there are usually just two kinds of
data that are organized into arrays: ASCII data and numerical
data. 	ASCII data is the same as STRING data in Basic
programs. There are many different kinds of numerical data:
bytes, integers, BCD numbers, and floating-point numbers are
some of the possibilities. Other types of data that might be
used in some applications include graphics code -- actually
numerical data, but of a very specialized kind -- and actual
machine code.

69

ORGANIZING ARRAYS AND TABLES 	PAGE 70

8.3 ASCII Tables

Data needs to be organized to enable efficient searching
through it. The subject of searching is also discussed in
connection with the block search instructions in chapter 9.
Here, we will go beyond the subject of searching through
single bytes to searching through groups of bytea,

Suppose that we have a list of names, and that we want to
aaaccia tucougu them to find a particular one. Here we might
encounter difficulties in distiuguisuIug the beginning and
middle of a name. For example, consider the following data:

JOSEPH
ans
Jo

I 	we enter these items into a table as they appear above, we
see that the letters "Jo" appear in each one. One solution is
to allocate a certain number of bytes to each item, and pad
the rest with blanks. (This is the method used by the Disk
nyacatioq System for file names and passwords.) 	In the
following table, all items have a length of eight bytes;

D8Fm 'JOSEPH '
oEFn 	'JOE 	'

DBrm 	'Jo

Now if we sencob for the succession 'JO 	', we will find
it only once. 	out this method is wasteful of memory space,
and does not allow for names longer than eight characters.
Another solution is to put some special value, such as zero,
or 13, the carriage-return character, at the end of each item
to signify the end:

o8r1v1 	'PHILADELPHIA'
ouFB 	0
oOFo 	'CHICAGO'
DCFS 	0
oaFm 'LOS amGoLmG^
oarB 0

This method allows strings of any length to represent an
item, but still "wastes" a byte at the end. A similar
solution is to gut a byte indicating the length of the string
at the beginning, following it with the data/ but this method
also uses an extra byte, and now we would have to count all
the letters!

An even better method takes advantage of the fact that
ASCII code is only seven bits and does not use the sign bit

ORGANIZING ARRAYS AND TABLES 	PAGE 71

(7). Therefore, as long as we remember to eliminate bit 7
when we get the item out of the table, we can set this bit as
an indication of the beginning of an item:

DEFB 	'J'+80H
DEFM 	'OSEPH'
DEFB 	'H'+80H
DEFM 	'ARRY'
DEFB 	'T'+80H
DEFM 	'HOMAS'

This table consists of the names 'JOSEPH', 'HARRY', and
'THOMAS', but the first character has the sign bit set. (This
method is used by Level II Basic when it searches for Basic
key words.)

You will probably have more frequent occasion to set up
tables that consist of more than one list, relating the items
in corresponding positions. For example, the following list
sets up two data tables, one consisting of the names of items
for sale in a supermarket, and the other prices. Items are
separated by the carriage return (13), and the end of the
table is indicated by a 255 control 	byte:

List 1 List 2
ITEMS DEFM 	'EGGS' PRICES 	DEFM '.69'

DEFB 	13 DEFB 13
DEFM 	'BREAD' DEFM '.79'
DEFB 	13 DEFB 13
DEFM 	'MILK' DEFM '.55'
DEFB 	13 DEFB 13
DEFM 	'BUTTER' DEFM '1.95'
DEFB 	13 DEFB 13
DEFB 	255 DEFB 255

Note that even though the items in the second list
represent prices -- numerical values -- ASCII data is used.
This makes it easy to print the values, but more complicated
to perform the arithmetic of adding up the bill. If we were
going to use this program for that purpose, we would probably
replace this data with integer or floating-point numbers.

Now let us consider the problem of writing a program to
search through a series of items such as these and to pull out
the price of an item selected. The following short program
inputs a name and places it into a buffer called QUERY. Since
the line input subroutine is used, the item name ends with a
carriage return. This is partly the reason we used the CR in
the tables above, which are to be copied into the program at
the end.

ORGANIZING ARRAYS AND TABLES 	PAGE 72

;Item - Price
ORG

START LD
PMSG 	LD

CALL
INC
CP
JR

ITEM 	LD
LD
CALL
JR
LD
LD

ITmLP 	LD
ITMLP2 LD

CP
JR
CP
JR
INC
INC
JR

NOTHIS INC
LD
CP
JR
CP
JR
JR

NEXT 	INC
NEXTD 	INC

LD
CP
JR
INC
JR

FOUND 	LD
CALL

FOUND2 LD
CP
JR
CALL
INC
JR

MSG 	DEFB
DEFM

QUERY 	DEFS
ITEMS 	DEFM

PRICES DEFM

Search
7000H
HL, MSG
A, (HL)
33H
HL

NZ,PMSG
HL, QUERY
B,20
40H
C, START
HL, ITEMS
BC, PRICES
DE, QUERY
A, (DE)
(HL)
NZ,NOTHIS
13
Z,FOUND
DE
HL
ITMLP2
HL
A, (HL)
13
Z,NEXT
255
NZ,NOTHIS
START
HL
BC
A,(BC)
13
NZ ,NEXTD
BC
ITMLP
A,'$'
33H
A,(BC)
13
Z,START
33H
BC
FOUND2
13
'ITEM?'
20
'EGGS'

;print 'ITEM?'

;ROM display routine
;point to next byte
;did we just print '?'
;if not keep going
;where to put data
;max length of input
;get line
;if BREAK, try again
;HL=>items
;BC=>prices
;DE=>test string
;lst char of test string
;compare to 'items' list
;try next
;stop at CR in test string
;eureka!
;try next char
;of item & query
;repeat
;on to next item
;test char
;CR?
;yes
;last item
;keep trying
;didn't find - try again
;char after CR
;now inc price list
;price char
;CR?
;no
;char. after CR
;try now
;print '$'
;before price
;print price
;last char?
;yes
;display
;next char

;print CR before...

;input buffer
;place ITEMS table here

'.69' 	;place PRICES table here

ORGANIZING ARRAYS AND TABLES 	PAGE 73

•••
END 	START

If the subroutine does not find the item after comparing
the names, it increments both the item pointer (HL) and the
price pointer (DE) and keeps going. 	The program is an
infinite loop, so that it returns and asks you for a new item
whether or not it finds the previous item.

The following code could be used instead of that at NOTHIS
above:

NOTHIS LD 	A,(HL)
INC 	HL
CP 	13
JR 	Z,NEXT
CP 	255
JR 	Z,START
JR 	NOTHIS

NEXT ;(NOT INC HL)

The difference here is that the "LD A,(HL)" precedes the
"INC HL", so that the comparison is always made with the
previous value. 	The first time that this occurs, we already
know that A will not be 13 or 255, so the loop is executed one
time unnecessarily. However, this eliminates the need for the
extra "INC HL" after the loop at NEXT. The same change could
be made to eliminate the extra "INC BC" at the end of the next
section of code. In writing TRS-80 programs, it is generally
preferable to optimize code in favor of using fewer bytes
rather than fewer instruction executions, but this is a choice
that you must make as a programmer. Here, even if we had
thousands of items in the list, the difference in execution
time would not be noticeable.

One complicated aspect of the short program above was that
it had to keep track of two separate tables. This can be
eliminated if the data is organized in a different manner,
such as the following:

DEFM 	I EGGS$.69 1
DEFB 	13
DEFM 	'BREAD$.79'
DEFB 	13
DEFM 	1 MILK$.551
DEFB 	13
DEFM 	'BUTTER$1.95'
DEFB 	255

If one table is organized in this manner, the "$" can be
used as a separator between one subfield and the other, and it

ORGANIZING ARRAYS AND TABLES 	PAGE 74

can also be printed as part of the text. This method would be
valid unless the item names contained imbedded dollar signs
highly unlikely! uuIikely!

8.3 Command cables

A problem related to the handling of tables above occurs when
we need to test a aeries of command letters in order to
perform some action. 	If our commands are represented by
single letters, there is no problem, for we can just have a
series of:

ce 's^
JP Z, START

But if we have commands of two or more letters, such as 'Gr'
for Sr0r and SW for GwzrCu, this type of programming gets very
cumbersome. If 8L points to the command word, we could:

Ce 'G'

Ja mx,00TG 	;lst char oot,S
INC 	8L 	/try next obac
co a,(oL)
Ce 	'?'

J9 z,azog /'ST'
CP 	'w'
JP 	z,SWITC8 	;'SW'

DEC 	8L 	;restore lot obac
Lo 	A.(aL)

mOTG 	... 	 ;continue

It is much more efficient to set up a table of command
words and addresses, such as the following:

COmroL oEFm 	'sz' ;command table
oorw sr0p
ooFn 	'Gw'

oErw SWITCH
^`^
ooru 25s

Note tna difference between D8rm and ooFw. n:rn defines a
string of ASCII characters, whereas oErw defines a woao
000ta1o1og the address of the memory location defined
elsewhere in the program. 'STOP' and 'SWITCH' are the names
of locations that contain the code executing these functions.

This table can be searched, so that the program braooboa to
the correct control word location if a match uoouca, as
follows:

ORGANIZING ARRAYS AND TABLES 	PAGE 75

LD 	HL,(COM) 	;(COM) contains 2-char com
LD 	DE,COMTBL 	;DE=>command table

LOOK 	LD 	A,(DE) 	;1st letter to A
INC 	DE 	;point to next letter
CP 	H 	;compare 1st letters
JR 	NZ,TRYNEX 	;no good
LD 	A,(DE) 	;try second letter
CP 	L
JR 	Z,GOTCHA 	;both match

TRYNEX INC 	DE 	;2nd letter of command
INC 	DE 	;2-byte address
INC 	DE
LD 	A,(DE) 	;last entry in table?
INC 	A
JR 	NZ,LOOK 	;no
JR 	DONE 	;yes

GOTCHA INC 	DE 	;transfer address
LD 	A,(DE) 	;to HL
LD 	L,A 	;lsb
INC 	DE
LD 	A,(DE)
LD 	H,A 	;msb
JP 	(HL) 	;execute command

DONE 	... 	 ;didn't find anything

Note the unusual method that this program uses to test for
the last value in the table. It takes advantage of the use of
the value 255 as the end byte. This value is loaded into A
and A is incremented. If A is now zero, then the previous
value must have been 255 and we are done. This method saves
one byte over the more usual succession:

LD 	A,(DE)
CP 	255

but the latter method, of course, allows any value to be used
as the end byte.

MOVING DATA

In this chapter we will cover one of the most important
subjects in TRS-80 assembly language programming: moving data
in memory. 	This is one of the tasks for which the Z-80
microprocessor is ideally suited. 	Before we get into it,
however, there is one thought that you should always keep in
mind when writing a program: avoid moving data! 	Write your
programs in such a way that the data is already located where
you will need it. 	Moving data around can consume much
execution time, especially if the moves are repeated very
often. Lists and tables can be structured so that you don't
have to go through each item to find something you are looking
for. If you do have to move data, though, at least the
programming is simple.

9.1 Moving Blocks

The register pairs BC, DE, and HL, as well as the two index
regsters IX and IY, are very important from the standpoint of
moving data within the TRS-80, because the address of any
memory location can be contained in exactly a two-byte
quantity. A BLOCK is any group of contiguous bytes in memory.
Suppose that we want to move one block to another. The first
block would be called the SOURCE BLOCK and the second the
DESTINATION BLOCK. As long as we know the starting address in
each block, it is easier to think of the length or byte count
of the blocks rather than the ending addresses, because both

76

MOVING DATA 	PAGE 77

blocks are of the same length, even though the ending
addresses are different. To move an entire block of data one
byte at a time, we could load the first byte from the source
block into the accumulator and store it in the destination
block, then decrement the byte counter to see if it is zero.
If not, we increment the pointers to both blocks and continue.
The only problem here is that we cannot test for a zero value
in a double register in just one instruction. Suppose that HL
points to the source block, DE to the destination block, and
BC ("byte count") to the length. The method described above
is implemented in the following program, which moves the
bottom 1K of ROM to the video display (try it!):

ORG 	7000H
START 	LD 	HL,0 	;source block

LD 	DE,3C00H 	;destination = video memory
LD 	BC,400H 	;length = 1K

LOOP 	LD 	A,(HL) 	;get byte
LD 	(DE),A 	;store in destination block
DEC 	BC 	;decrement length
LD 	A,B 	;BC = 0?
OR 	C
JR 	Z,DONE 	;if zero, done
INC 	HL 	;point to next locations
INC 	DE
JR 	LOOP 	;continue

DONE 	CALL 	49H 	;wait for keyin
JP 	0 	;re-boot system
END 	START

Only the portion of the program up to DONE is necessary to
move the block. At DONE, the program waits for you to type a
key, then re-boots the system. We will continue to use this
format throughout this chapter.

This routine requires 12 instructions occupying 20 bytes.
While it works fine, it turns out that everything from LOOP to
the end can be accomplished by just one Z-80 instruction,
LDIR, specifically intended for moving blocks of data. 	LDIR
also happens to use the same registers we have used in this
example for the same purposes 	HL points to the source
block, DE to the destination block, and BC to the byte count.
All we have to do is follow the first three instructions above
by LDIR:

ORG 	7000H
START 	LD 	HL,0 	;source block

LD 	DE,3C00H 	;destination block
LD 	BC,400H 	;length
LDIR 	 ;move block

DONE 	CALL 	49H 	;wait for keyin

MOVING DATA 	PAGE 78

JP 	0
	;re-boot

END 	START

LDIR moves (HL) to (DE) without even affecting the
accumulator. 	This method requires only 11 bytes, and is even
faster than the previous loop method.

LDIR is one of the most important Z-80 instructions. It
did not exist on the 8080. It is part of a group called the
Block Transfer and Search instructions, and there are several
similar instructions that should be mentioned in the same
context.

LDI also moves blocks of data like LDIR, except that only
one byte is moved at a time and the instruction stops. The HL
and DE registers are incremented and BC decremented, and the
end of the loop is signified by the parity/overflow flag being
reset. The reason for using LDI is to stop and do something
else after each byte is moved. To continue to move the block,
the instruction needs to be included in some kind of loop.

As an example of the use of LDI, suppose that we want to
move the first 1K of ROM to the video display as above, but
that we want to stop at the first occurrence of the byte 'A'.
If this byte is not found, the loop continues until the entire
1K is moved. 	The following program uses LDI to accomplish
this task:

ORG 	7000H
START 	LD 	HL,0 	;source block

LD 	DE,3COOH 	;destination block
LD 	LD,400H 	;length

LOOP 	LDI 	 ;move one byte
EX 	AF,AF' 	;save flags
LD 	A,(HL) 	;get next byte
CP 	'A' 	;is it 'A'?
JR 	Z,DONE 	;if zero, yes
EX 	AF,AF' 	;restore flags
JP 	PE,LOOP 	;continue on parity even

DONE 	CALL 	49H 	;wait for keyin
JP 	0 	;re-boot
END 	START

The exchange AF with AF' instructions are needed to save the
parity/overflow flag while the comparison is made. 	The
compare instruction may reset parity/overflow before the loop
is finished. Rather than having the flags saved in memory,
they are saved in the alternate register set.

LDD and LDDR are the same as LDI and LDIR, except that the
DE and HL registers are decremented rather than incremented

MOVING DATA 	PAGE 79

during the operation. Instead of setting HL and DE to the
first location in each block, you start them out at the last
location. CC holds the byte count, as before, and it is
decremented as with LDI and LDIR. These operations are used
when you want to go through the blocks backwards, such as when
searching for something as in our example of LDI above, or
when you want the values of the HL or DE registers to point to
the locations immediately preceding the blocks when finished.
The following example moves the first 1K of ROM to the video
display and looks for the first occurrence of a 'Y' to
terminate the move; but the move is carried out backwards,
starting at the bottom of each block.

ORG 	7000H
START 	LD 	HL,3FFH 	;source block (last address)

LD 	DE,3FFFH 	;destination block
LD 	HL,400H 	;byte count

LOOP 	LDD 	 ;move one byte
PUSH 	AF 	;save flags in stack
LD 	A,(HL) 	;get next byte
CP 	lyt 	 ;is it a 'Y'?
JR 	Z,DONE 	;if zero, yes
POP 	AF 	;retrieve flags
JP 	PE,LOOP 	;continue if parity even

DONE 	CALL 	49H 	;wait for keyin
JP 	0 	;re-boot
END 	START

In this example, the flags are saved in the stack rather than
in the alternate register set.

It is important to realize that although LDIR and LDDR are
only single instructions, their execution time depends on the
length of the block being moved. 	They do not operate
instantaneously; they move one byte at a time. Each move
requires five machine cycles, taking 21 T states or 11.823
microseconds on the TRS-80. Nevertheless, they are among the
most efficient operations of the Z-80.

9.2 Filling Blocks

Filling a block simply involves storing the same value in each
location. 	For this purpose, it is easy to employ the first
method illustrated above, where a single register holds the
value and one of the register pairs, particularly HL, points
to the locations in the block. We also need another register
pair such as BC to hold a byte count. We cannot use the
accumulator to hold the value to be stored, because it must be
used repeatedly to test whether BC has been decremented to
zero. 	The following example fills the video display with a

MOVING DATA 	PAGE 80

completely white graphics block:

ORG 	7000H
START 	LD 	HL,3C00H 	;pointer to video memory

LD 	BC,400H 	;byte count
LD 	D,OBFH 	;graphics block

LOOP 	LD 	(HL),D 	;store byte
DEC 	BC 	;decrement count
LD 	A,B 	;is BC = 0?
OR 	C
JR 	Z,DONE 	;if zero, yes
INC 	HL 	;point to next location
JR 	LOOP

DONE 	CALL 	49H 	;wait for keyin
END 	START

It is important to use HL as a memory pointer whenever
possible, because any register can be stored or loaded using
HL, whereas only the accumulator can be used with DE or BC.
(Any register can also be used with the index registers IX and
IY, but these instructions should not be used when moving data
around in this manner, because they take longer and are
intended for different applications.)

While the above method of filling a block is easy enough,
it is also possible to use LDIR or LDDR for the same purpose,
and that method is even easier. The trick is to store the
first byte in the block, and then to set the source address to
the value of this byte and the destination to the byte
immediately following. The byte count is set to one less than
the total length of the block. 	LDIR then moves the byte
indicated by HL (the first byte, already stored) to the
address indicated by DE (the next location), and the process
continues until the whole block is filled. The following
example also fills the video screen with a graphics block, as
the example above, but uses LDIR to accomplish the task:

ORG 	7000H
VIDEO 	EQU 	3COOH 	;first video location
START 	LD 	HL,VIDEO 	;first location

LD 	DE,VIDE0+1 	;next location
LD 	BC,3FFH 	;length
LD 	(HL),OBFH 	;store first byte
LDIR 	 ;fill screen
CALL 	49H 	;wait
JP 	0 	;re-boot
END 	START

MOVING DATA 	PAGE 81

This program is identical to the program illustrating the
use of the Editor/Assembler program in the User's Manual
(Radio Shack catalog number 26-2002).

9.3 Searching Through Blocks

Searching through memory to find a specific value involves the
same kind of process as moving a block of data, and the 2-80
also has a special group of search operations analogous to the
LDIR group. The most important of these is CPIR. 	There are
also CPI, CPD, and CPDR. CPIR requires that you set HL to the
first location of a block and BC to the length. The value to
be searched for is loaded into the accumulator. Upon
execution of CPIR, each byte in the block is compared with the
accumulator. 	If a match occurs, the instruction is
terminated. If not, the search continues until either a match
is found or the entire block is searched. If BC is set to
zero before the instruction begins, the computer will search
through the entire 64K bytes of memory until it finds the
value. When the match is found, HL contains the address of
the byte following the match, and BC the number of bytes
remaining to be searched. In this manner, the search can be
continued as soon as the processing of the match is completed.
The sign and zero flags are set as a result of the compare,
and the parity/overflow flag is reset when BC is finally
decremented to zero.

The following example searches through the entire memory of
the TRS-80 for the value 253 (FD hexadecimal, the first byte
of an IY instruction). When one is found, the address of the
location where it is found is displayed (in hexadecimal) and
the search continues.

VALUE 	EQU 	OFDH 	;byte to search for
ORG 	7000H

START 	LD 	HL,0 	;first location to search
LD 	BC,0 	;length = 64K
LD 	A,VALUE ;byte to look for

LOOP 	CPIR 	;search
JP 	PO,DONE ;if PO we're done, else we have match
EX 	AF,AF' ;save A & flags
DEC 	HL 	;because HL = next loc
LD 	A,H 	;display HL in hex
CALL 	HEX
LD 	A,L
CALL 	HEX
LD 	A,' 	;print space between addresses
CALL 	33H 	;ROM display routine
INC 	HL 	;restore HL
EX 	AF,AF' ;get back A & flags

MOVING DATA 	PAGE 82

Jm 	u]Ve 	;con tin tie
oUNn 	CALL 	49a 	/wait for keyiu

JP 	0 	;re-boot
/beu display routine - see chapter 7
HEX 	PUSH 	AF

uuCA
RuC&
auC&
auC&
CALL 	BEX2
r0e 	AF

8ox2 	AND 	15
ADD 	A,30a
Ja 	C,oI8e
uon 	 ,7

oI8e 	CALL 	338
aoz
END 	START

To have the program search for another value, simply change
the argument field in the VALUE EOu statement. If you want to
see something amusing, change it to 255 and see what happens!
(If you want to movw why this happens, just remember that 255
is the value that you get in locations where no memory
actually exists.)

The other search operations CPI, oro, and Cpoo are
analogous to LoI, Lon/ and Looa. CPI and Ceo search only one
byte at a time and stop, and CPo and Cpoa search backwards
through memory. While we will not demonstrate their use berm,
you can probably imagine situations where they might be
preferable to cPIe. 	In any event, it is easy to see the
usefulness of these operations.

ARITHMETIC OPERATIONS
WITH INTEGERS

One of the most important limitations of all 8-bit
microprocessors is their ability to perform only a few
arithmetic operations. The Z-80 instruction set includes only
the operations of addition and subtraction of 8- and 16-bit
numbers. 	(The Z-80 is an improvement over the 8080, which
does not include a 16-bit subtract operation!) 	This means
that almost all computation -- not only multiplication and
division, but also addition and subtraction of larger
quantities -- must be carried out in rather complicated
subroutines which perform repeated additions and
subtractions.

The question of the form in which the numbers are
represented in memory is thus of crucial importance. For the
TRS-80, there are really only two sets of number formats to
consider: those provided in the Z-80 instruction set, and
those in Level II Basic. Other formats can be implemented for
various reasons, such as to achieve greater precision.

83

ARIPHMETIC OPERATIONS WITH INTEGERS 	PAGE 84

10.1 8-Bit Addition

The basic 8-bit arithmetic operations require the use of
the accumulator to hold one of the operands and the result of
the operation. The operations are as follows:

ADD 	A,r 	Adds the contents of register r to A.
ADD 	A,(HL) 	Adds the contents of the location

whose address is in HL to A.
ADD 	A,n 	Adds the value n to A.
ADD 	A,(IR+d) Adds the contents of the location

(IX+d) or (IY+d) to A.

The condition codes are set to reflect the results of the
operations. If zero is produced, the Z flag is set. The sign
flag is copied from the sign bit of the accumulator.

What happens if the result produced is too large to be
contained in the accumulator? Let us clarify this situation
through an example. 	If we add the two largest possible
numbers together, 255 + 255 = 510, we find that 510 is too
large to be contained in a single byte. Any result that can
be obtained through the addition of two bytes requires at most
one extra BIT, and what the Z-80 does is to put this bit into
the carry flag. The P/V flag is also set to indicate an
overflow (which would be detected through the use of the PO
condition, because this is the same as odd parity). 	This
operation can be illustrated as follows:

register 	binary 	hexadecimal 	decimal
A 	1111 1111 	FF 	255
B 	1111 1111 	FF 	255

Carry 1 	A 	1111 1110 	FE 	254

Since the carry bit occupies the position of the ninth bit,
its value is 256, which, when added to 254, gives the correct
result of 510.

This extra bit of precision can now be used in subsequent
operations, to propagate the correct result into other bytes,
which, when grouped with the original byte, are large enough
to hold the correct result. To carry out this propagation,
there is another set of operations that add or subtract the
carry bit along with the two bytes. These operations are as
follows:

hexadecimal
60
9F

A0

binary
0110 0000
1001 1111

+ 	1
1010 0000

given number
one's complement
add 1
two's complement

ARITHMETIC OPERATIONS WITH INTEGERS 	PAGE 85

ADC A,r Adds A + r + carry
ADC A,(HL) Adds A + (HL) 	+ carry
ADC A,n Adds A + n + carry
ADC A,(IR+d) Adds A + (IX+d) 	+ carry

or A + (IY+d) 	+ carry

Some of the applications of these operations are illustrated
below in the multiple-precision operations.

10.2 Negative Numbers; Two's-Complement Notation

Thus far, we have been discussing the values contained in
bytes as if they all represented positive or absolute values.
In fact, they often represent negative values, and the Z-80
has a special way of indicating negative numbers. As we
discuss this subject, it is important to keep in mind that
several bytes are often grouped together to contain large
values, and in this case only one sign applies to the entire
group of bytes.

First, negative numbers are represented by considering bit
7, the leftmost bit, to be a SIGN. 0 indicates a positive
number and 1 a negative number. Only 7 bits are then left to
hold the value of the number. Second, negative numbers are
represented in a form called TWO'S-COMPLEMENT NOTATION.

If the sign of a byte is positive, the 7 bits of data
simply indicate the value of the number, which can thus range
from (+) 0 to 127. For example, if the bits in a byte read
0011 0010, the value is 32 hexadecimal which equals 50
decimal. 	You might think that if you changed the sign bit to
1 the number would represent -50, but in fact this is not the
way that two's-complement notation works. To understand two's
complement, you must first understand the ONE'S COMPLEMENT.
The one's complement of a binary number is formed by changing
all the zeros to ones and ones to zeros. This is easy. 	In
our example, the one's complement of 0011 0010 is 1100 1101.
To form the two's complement, you add 1 to the one's
complement. 	The two's complement of 0011 0010 is thus 1100
1111 	Let us illustrate this process in a couple of
examples:

(a) Find the two's complement of +96 (60 hexadecimal):

ARITHMETIC OPERATIONS WITH INTEGERS 	PAGE 86

(b) Find the two's complement of +127 (7F hexadecimal):

hexadecimal
7F
80

81

binary
0111 1111
1000 0000

+ 1
1000 0001

given number
one's complement

two's complement

The curious thing about two's-complement notation is that
the value of MINUS ZERO does not exist. Instead, -128 does.
The complete range of signed values for bytes is thus -128 to
+127.

Since negative numbers are so important, the Z-80 has a
separate instruction, NEG, that produces the negative
equivalent of a byte. There is also a CPL instruction that
produces the one's complement. (CPL exists on the 8080, but
NEG does not.)

Why do computers use two's-complement notation? The reason
is that it simplifies the operation of arithmetic
computations. 	Any combination of additions and subtractions
will work. When two's-complement notation is used, the sum of
a number and its negative value is always 256, which comes out
to be zero when the extra bit shifts into the carry. 	Thus,
whether bytes represent values of -128 to +127 or 0 to 255 is
entirely a way of interpreting the number. Sometimes you can
decide to use the sign and other times not to.

10.3 8-Bit Subtraction

Now that we understand negative numbers, let us consider the
8-bit subtraction operations. They parallel exactly the 8-bit
addition operations:

SUB 	r 	Subtracts the contents of r from A.
SUB 	(HL) 	Subtracts the value in (HL) from A.
SUB 	n 	Subtracts n from A.
SUB 	(IR+d) 	Subtracts the value in (IX+d) or

(IY+d) from A.
SBC 	A,r 	Subtracts r and the carry bit from A.
SBC 	A, (HL) 	A - (HL) - carry
SBC 	A,n 	A - n - carry
SBC 	A,(IR+D) A - (IX+d) - carry or

A - (IY+d) - carry

Why is A indicated as an operand with SBC and not with SUB?
The rule is that A must be indicated as the first operand
whenever there is another possible Z-80 instruction that uses
another first operand. In this example, "SBC HL,DE" 	is a

ARITHMETIC OPERATIONS WITH INTEGERS 	PAGE 87

possible operation, but "SUB HL,DE" is not. There is a 16-bit
SBC operation, but no 16-bit SUB operation. Another point to
note is that, when dealing with subtract operations, it is
more relevant to think of the carry bit as a "borrow" rather
than as a carry, but the letter C is what is indicated in the
mnemonic.

If we consider some examples of subtraction operations, we
can see the way that the two's-complement notation works:

(a) Subtract 20 from 8 (8 - 20 = -12)

The easiest way to explain the functioning of this
operation is to do it the same way that you would if you were
doing the arithmetic by hand: note that -20 is of greater
magnitude than 8, and therefore subtract 8 from 20 and negate
the answer:

hexadecimal 	binary 	decimal
14 	0001 0100 	20
08 	0000 1000 	8

OC 	0000 1100 	12
F3 	1111 0011 	one's complement

+ 1
F4 	1111 0010 	-12

(b) Add 8 and -20 (8 + (-20) = 12)

08 	0000 1000
	

8
EA 	1110 1010 	-20

F4 	1111 0010 	-12

This example was included to verify that the addition of a
negative number would also produce the correct result.

(c) Add 234 and 8

08
	

0000 1000 8
EA
	

1110 1010
	

234

F4 	1111 0010 	242

This example shows that the Z-80 is indifferent as to
whether the bytes added are considered positive unsigned
numbers or signed numbers. The results are correct in either
case. To verify that the binary answer is correct, we
evaluate each of the bits as follows: 2 + 16 + 32 + 64 + 128
= 242.

ARITHMETIC OPERATIONS WITH INTEGERS 	PAGE 88

When a subtract with carry operation occurs, it subtracts
not only the number, but also the carry bit. Thus, while an
ADC operation may make the result 1 greater because of the
carry bit, an SBC operation may make it 1 less.

10.4 Multiple-Precision Addition and Subtraction

The 8-bit addition and subtraction operations can be combined
to perform calculations on any size quantities. As an example
of this sort of operation, we will first use the 8-bit
operations to perform 16-bit calculations. These can then be
compared to and verified by the 16-bit operations. 	The
following routine adds two two-byte values whose addresses are
contained in the IX and IY registers. For compatibility with
16-bit operations, it is assumed that the bytes are stored
"backwards" in memory (least-significant byte first):

LD 	A,(IX) 	;get lsb of 1st value
ADD 	A,(IY) 	;add lsb of 2nd value
LD 	(IX),A 	;save in (IX)
LD 	A,(IX+1) 	;get msb of 1st value
ADC 	A,(IY+1) 	;now add the carry too
LD 	(IX+1),A 	;store in (IX+1)

The main point illustrated by this example is that the
carry bit must be added the second time but not the first.
Also, while this example takes six instructions, it is not
particularly difficult, and four of the six instructions are
used to retrieve and store the data.

The following subroutine performs a 16-bit subtraction
operation, subtracting the value in the DE register pair from
that in HL and storing the result in HL. It is equivalent to
the Z-80 operation "SBC HL,DE", but has a very practical
application to the 8080 microprocessor, since the 8080 does
not include this instruction:

DSBC 	PUSH 	AF 	;save previous value of AF
LD 	A,L 	;get lsb of 1st operand
SUB 	E 	;subtract lsb
LD 	L,A 	;save in®L
LD 	A,H 	;get msb
SBC 	D 	;subtract msb
LD 	H,A 	;save in H
POP 	AF 	;restore AF
RET 	;return

We can verify that the result produced by this subroutine
is identical to that produced by the SBC HL,DE instruction by

ARITHMETIC OPERATIONS WITH INTEGERS 	PAGE 89

comparing the results later. 	(There is one difference,
however: the condition codes are not the same.)

It is now easy to see how these operations can be extended
to greater precision through the use of additional bytes to
hold the numbers. The following subroutine performs a 4-byte
integer addition to two sequences of bytes whose addresses are
held in the HL and DE register pairs, the former also being
used to hold the result. 	4-byte integers like these are
capable of containing values up to 2 to the 31st power -1,
which equals 2,147,483,647. In this case the bytes are all
stored backwards in memory, so that when the subroutine is
entered the registers point to the least-significant bytes:

ADD4 	LD 	A,(DE) ;get lsb of first number
ADD 	A,(HL) ;add lsb of second number
LD 	(HL),A ;save
LD 	6,3 	;3 remaining bytes

ADD4LP INC 	HL 	;point to next bytes
INC 	DE
LD 	A,(DE) 	;get next byte
ADC 	A,(HL) 	;add the carry this time
LD 	(HL),A ;save
DJNZ ADD4LP ;continue
RET 	;done

Since the addition of all bytes after the first can be done
in a loop, the code for this routine is not significantly more
complicated than a 16-bit add loop. 	In fact, as the next
example shows, all operations can be done in a single loop
through the use of an additional instruction: OR A, which has
the sole effect of clearing the carry bit, without changing
the value in the accumulator. If the carry is cleared before
the first instruction is executed, but not after the
subsequent ones, the add or subtract with carry operations can
be used exclusively. The following subroutine does a 4-byte
subtraction corresponding exactly to the 4-byte addition
above, using only the SBC operation, so that the whole
subroutine is one loop. The HL and DE registers are used to
hold the addresses of the operands, DE holding that of the
minuend and HL the subtrahend:

SUB4 	LD 	B,4 	;4-byte subtract
OR 	A 	;clear carry

SUB4LP LD 	A,(DE) ;get minuend
SBC 	A,(HL) ;subtract subtrahend
LD 	(DE),A ;save difference
INC 	DE 	;point to next bytes
INC 	HL
DJNZ SUB4LP ;continue
RET 	;done

ARITHMETIC OPERATIONS WITH INTEGERS 	PAGE 90

10.5 Compare Operations

Compare operations are equivalent to subtracts, only with one
important difference: 	the values in the registers are
unchanged. 	only the condition codes are affented. The x-80
has only 8-bit compare operations, all of obiob require using
the accumulator. The most obvious application of omngaces is
to test whether the value in the accumulator is equal to some
other number, but it is also possible to teat whether it is
greater or less than another value. Compare instructions are
almost always followed immediately by conditional JP or Ju
inutuctioos. Thus, it is most useful to remember the meanings
of the various conditions:

condition 	means tbat...
Z 	the value compared was BOoaL to that in the

accumulator.
Wx 	the two values are UNEQUAL.
C 	the absolute value in A is LESS 'Paam the

compared value.
NC 	the absolute value of a is GREATER THAN

OR mDDac TO the compared value.
M 	The signed value of x is LESS THAN the

compared value.
P 	The signed value of a is GuDxzox THAN

OR o0Uac TO the compared value.
PO 	An overflow was produced by the compare

operation.
eC 	No overflow was produced by the compare

operation.

The x and 0% conditions present no problem, while the
difference between C and m on the one hand, and NC and p on
the other, require additional explanation. Use of the p and m
conditions, wb1ob could be renamed NS ("no sign" = e) and S
("sign" = M) by analogy with the others, depends on whether
you are using numbers in the positive and negative sense and
evaluating bytes on a -138 to +I27 Umaie. -2 is less than +l,
but the absolute value is greater because -2 is F8 hexadecimal
in two's-complement form, whereas +l is 01. The sign bit is a
copy of bit 7 of the accumulator.

The C and mo conditions do not depend on the sign, but
rather on the absolute value of the bytes, on a scale from 0
to 255. 	If the value of -1 in the accumulator is compared
with +l, the 0C condition will be set, because the absolute
value of -1 is Fe ~ 255. The advantage of using C and NC is
that the jump relative 1ootcuntiooa recognize these conditions
(as well as Z and N3), but not P and M (nor PO and pD).

ARITHMETIC OPERATIONS WITH INTEGERS 	PAGE 91

10.6 16-Bit Instructions

As we mentioned above, the Z-80 also has 16-bit addition and
subtraction operations. Most of these use the HL register
pair in the same way that the 8-bit operations use the
accumulator. The index registers can also be used for
addition only. The operations are as follows:

ADD 	HL,ss 	ss must be BC, DE, HL, or SP
ADC 	HL,ss
SBC 	HL,ss
ADD 	IR,pp 	pp must be BC, DE, SP, IX,

or IY (IX can be added only
to IX and IT to IY)

One of the first important differences between the 8-bit
and 16-bit operations is that the 16-bit operations require
that the operands reside in the registers themselves. No add
or subtract with memory or immediate data exists.
Fortunately, the Z-80 also has instructions that load double
registers directly to or from memory (the 8080 only allowed
this with HL).

There are two important applications of the 16-bit
operations: the computation of memory addresses and integer
arithmetic in Level II Basic. 	Any memory address can be
contained in a 16-bit register. 	You can thus compute the
addresses where data are stored if you need to. Level II
Basic integers may have values from -32768 to +32767. 	The
main difference between these two applications is the same as
between signed and absolute bytes: 	memory addresses are
usually considered on an absolute scale from 0 to 65535, while
Level II Basic integers use the sign bit. If you are familiar
with the PEEK and POKE statements, perhaps you already know
that if you want to PEEK or POKE from locations 32760 to
32770, you have to go from 32760 to 32767, and then from
-32768 to -32766. The rule for this anomaly is that if the
PEEK or POKE address is above 32767, you must subtract it from
65536. Locations 32768 to 65535 are thus referred to by
-32768 to -1.

The 16-bit instructions can be used to perform the same
multiple-precision adds and subtracts mentioned above, in
fewer instructions. The problem here is that the register
pairs cannot be used to contain addresses, since they have to
be used to hold the data itself. 	This requires either
reorganizing the use of the registers in the subroutines, or
using additional instructions to fetch and store the bytes.
The following subroutine performs a 32-bit add as shown above,
using the 16-bit instructions. In this example, IX and IY
contain the addresses of the first byte of the operands.

ARITHMETIC OPERATIONS WITH INTEGERS 	PAGE 92

IX is also used as a pointer to the result.

ADD4 	LD 	B,2 	;loop twice
OR 	A 	;clear carry

ADD4LP LD 	L,(IX) 	;1st byte of 1st operand
LD 	H,(IX+1) 	;2nd byte of 1st operand
LD 	E,(IY) 	;lst byte of 2nd operand
LD 	D,(IY+1) 	;2nd byte of 2nd operand
ADC 	HL,DE 	;perform addition
LD 	(IX),L 	;save lsb
LD 	(IX+1),H 	;save msb
INC 	IX 	;inc each reg twice
INC 	IX 	;since 2 bytes
INC 	IY 	;added each time
INC 	IY
DJNZ 	ADD4LP 	;continue
RET 	 ;done

It can easily be seen that the additional work required to
fetch and store the data makes this method unwieldy and
cumbersome. Note also that the previous contents of HL, DE,
and B are lost in the above subroutine. Saving and restoring
them would require a minimum of six additional instructions.

The main advantage of the 16-bit arithmetic instructions is
that they can be built right into the code of a program
section, so that they do not require calling an external
subroutine, which is necessary for most other types of
arithmetic performed by the Z-80.

One final note. All 16-bit numbers, whether they represent
addresses in machine instructions or Level II Basic integers,
are stored "backwards" in memory, with the least-significant
byte first. 	This is done automatically by the LD
instructions, so that you never have to worry about it, except
if you go PEEKing through the individual bytes in memory. As
we have seen, one advantage of this method (which goes back to
the 8008, the predecessor of the 8080) is that the bytes can
be added in the order in which they occur in memory, for
multiple-precision operations.

10.7 INC and DEC

The INC ("increment") and DEC ("decrement") operations are
also classified as arithmetic operations, because they add or
subtract 1 from the registers, even though the value 1 can
never be changed. There is a fundamental distinction between
the single- and double-register INC and DEC instructions. INC
r and DEC r affect the condition codes, but INC ss and DEC ss
do not. 	Unfortunately, Zilog uses the same mnemonic in each

ARITHMETIC OPERATIONS WITH INTEGERS 	PAGE 93

case, so the only way to keep it straight is to note carefully
the operands. 	(In Intel's 8080 mnemonics, "INC ss" and "DEC
ss" are replaced by "INX s" and "DCX s". "X" is always used
for double registers, and "s" is the first register of the
pair.)

INC and DEC should always be used when you want to add or
subtract only one from a register, because the operation
requires only one byte and executes in 4 T cycles. These are
also convenient when you need to step through a series of
bytes one-at-a-time, as we saw above in the multiple-precision
addition and subtraction loops.

Single registers can be used to hold a count of the number
of times a series of instructions is to be executed. 	This
feature is provided automatically in the DJNZ instruction,
which DECrements B and branches to a nearby location if B is
non-zero (it is a jump relative). Up to 256 iterations can be
achieved by this method, because the register is decremented
before the "JR NZ" occurs (to get 256 iterations, start B with
the value zero). Similar operations can be carried out using
any single register, although two instructions (the DEC and JR
or JP NZ) are needed.

A similar procedure can be instituted with the double
registers, but the fact that these INCs and DECs do not affect
the condition codes forces a revision in the procedure. The
use of two registers makes it possible to go through up to
65536 iterations in a loop. A special process is necessary to
test whether the value in the double register is zero. One of
the most common methods of doing this is the following, which
tests whether HL is zero:

LD 	A,H 	;load A from H
OR 	L 	;or A with L
JR 	NZ,LOC ;if non-zero, continue

(Why this works will be explained later in our discussion of
logical operations.) The disadvantage of this method is that
it destroys the value in the accumulator, but practically any
other method would either do the same or would be more complex
than simply saving and restoring A.

FLOATING-POINT AND
rir

11.1 Floating-Point Numbers

FLOATING-POINT NUMBERS are the most common method by which
numbers containing both an integer portion and a tractional
portion are represented in computers. A floating-point number
contains a SIGN, EXPONENT, and FRACTION. There is also a sign
of the exponent. The Level II Basic Reference Manual claims
that the fraction contains a certain number of SIGNIFICANT
FIGURES. Actually, it contains a number of significant BITS,
which more or less correspond to a number of significant
decimal digits. 	The only difference between single- and
double-precision numbers is the number of bytes used for the
fraction. Single-precision numbers use three, and double-
precision seven. 	The exponent is the same in each case and
requires one byte. The accuracy of double-precision numbers
is greater, but still not perfect, as we will see below.

Floating-point numbers on the TRS-80 have the following
format: the last byte contains the exponent, and the order of
the first three bytes is "backwards" in memory. The last byte
is what you will see if you PRINT PEEK(VARPTR(X)+3) for
single-precision numbers, where X is the number, or
PEEK(VARPTR(X)+7) for double precision numbers. The first bit
represents the sign of the exponent, 1 being used for positive
exponents and 0 for negative exponents. A "positive" exponent
means that the binary point (same as "decimal point" but for
binary numbers) is moved to the right, and a "negative"

94

FLOATING-POINT AND BCD NUMBERS 	PAGE 95

exponent means that it is moved to the left, producing a value
less than 1. 	The exponent itself is contained in the
remaining seven bits, and thus can range from -127 to +127.
There is one exception: if this whole byte is zero, then the
number itself is zero. 2 to the 127th power allows a range of
values up to about 10 to the 37th or 10 to the -39th power.
Any number in this range is represented with about six
significant figures for single-precision numbers, or 16
significant figures for double-precision numbers. 	The
following are some examples of floating-point exponents:

hexadecimal
81

83

7D

80

binary
1000 0001

1000 0011

0111 1101

1000 0000

meaning
+1: poria7 moved one bi-E-175.
the right
+3: point moved 3 bits to
the right
-3: point moved 3 bits to
the left
+0: the point is immediately
to the left of the first bit

The fraction of the number gives its value and is contained
in the remaining bytes in a backwards order. In addition, the
first byte of the fraction, stored next to last in memory
(VARPTR(X)+2 for single-precision numbers), gives the SIGN of
the number in its leftmost bit, 0 indicating a positive and 1
a negative number. 	There is no difference between positive
and negative numbers except for this bit (no two's-complement
notation for floating-point numbers!). This leaves the most-
significant bit unaccounted for, and THIS BIT IS ALWAYS
IMPLIED TO BE A 1. A fraction consisting of 3 bytes of zeros
thus actually represents +1 binary. Now all we have to do to
evaluate floating-point numbers is to remember that each
binary bit represents a power of 2. Positive values equal 1,
2, 4, 8, 	16, etc., and negative values 1/2, 1/4, 1/8, 1/16,
etc. The following examples illustrate how some
floating-point values are actually stored in memory:

hexadecimal
(order in
	

binary fraction
	

decimal
memory)
	

(correct order)
	

value
(a) 00 00 00 81

	
1000 0000 0000 0000 0000 0000

	
1.0

The binary value of this number is 1 followed by all zeros.
The exponent +1 means that the binary point is moved one bit
to the right, producing 1.0000 (etc.). The sign of the number
is positive.

FLOATING-POINT AND BCD NUMBERS 	PAGE 96

(h) 	00 00 40 83 	1100 0000 0000 0000 0000 0000 	6.0

When the exponent of +3 is applied, the binary number produced
is 110.0, which equals decimal 6.

(c) 00 00 40 81 	1100 0000 0000 0000 0000 0000 	1.5

Moving the exponent one bit to the right produces 1.1 binary.
".1" represents one-half in binary notation, so this number is
1.5.
(d) 00 00 FO 84 	1111 0000 0000 0000 0000 0000 	-15.0

1111 binary equals 15, but don't forget that the first hit of
the third byte is the sign of the number.

(e) 00 00 F0 80 	1111 0000 0000 0000 0000 0000 	0.9375

The exponent 0 means that the binary point is immediately to
the left of .1111. This value is thus 1/2 + 1/4 + 1/8 + 1/16
=0.9375. This example shows that, for values less than one,
you don't always have exactly six significant figures. Here
is a four-digit number represented completely correctly in
only four bits. Most numbers do not have such accuracy.

(f) CD CC 4C 7D 	1100 1100 1100 1100 1100 1101 	0.1

Just looking at the binary value of this number tells you that
it is a repeating fraction in binary form, just as 1/3 in
decimal form gives .33333.... The exponent 7D equals -3, so
the fraction is .00011001100 etc. The value is computed as
1/16 + 1/32 + 1/256 + 1/512 etc. = .0625 + .03125 + .00390625
+ .001953125 = .099609375, getting closer and closer to .1 as
the process continues.

These examples illustrate some of the problems that occur
when using floating-point numbers. 	Many decimal numbers
cannot be represented precisely without losing some tiny bit
of accuracy. When many arithmetic operations are performed on
the same values, the magnitude of this inaccuracy increases.
This imprecision is a result of the method of number
representation, and does not disappear when double-precision
numbers are used, although the amount of error decreases. You
must remember that the number always contains significant
figures (bits). 	If you add 100000.0 and .0001 using single-
precision numbers, the result will be 100000 because of the
loss of significance past the sixth digit. Figuring out the
value represented by some number, or figuring the
floating-point number corresponding to some value, is no easy
task.

FLOATING-POINT AND BCD NUMBERS 	PAGE 97

What these examples illustrate is that it is difficult
enough to understand just how floating-point numbers are
represented inside the computer, let alone how to do
arithmetic on them. 	Each arithmetic operation requires a
complicated subroutine that may execute thousands of machine
instructions for each call. 	While Basic may be slow in
general, it is usually preferable to perform such operations
as floating-point calculations using Basic rather than
assembly language.

11.2 Binary-Coded-Decimal Numbers

There is another number format frequently used with the 8080
and Z-80 microprocessors. 	It was considered to be so
important by the designers of these microprocessors that they
included a special machine operation and two special flags to
enable arithmetic operations to be done easily in this form.
This number format is called BINARY-CODED-DECIMAL or BCD. The
special operation is the DAA ("decimal adjust accumulator")
instruction, and the flags are the half-carry (H) and
Add/Subtract (N) flags, which are used only by DAA, although
they are set or reset by many operations.

The advantages of BCD numbers are that they are inherently
very easy to understand, and any inaccuracies they contain are
the same for decimal numbers with which we are so familiar.
Although four bits can contain values from 0 to 15, the values
from 10 to 15 are never used. Instead, when a DAA operation
is performed, any values above 9 are adjusted, so that the
maximum value contained in a digit is 9 and in a byte 99, the
excess value being shifted into the carry bit.

Any series of N BCD bytes contains N x 2 decimal digits.
In our examples below, we will restrict our use of decimal
numbers to two-byte quantities capable of holding values from
0 to 9999. We will first illustrate some BCD numbers, and
then arithmetic operations (addition and subtraction)
performed on them. One convenient property of BCD numbers is
that their decimal and hexadecimal values are the same.

(a) decimal: 	1 	2 	3 	4
binary: 	0001 0010 0011 0100

(b) decimal: 	5 	6 	7 	8
binary: 	0101 0110 0111 1000

(c) decimal: 	9 	9 	9 	9 	(maximum
binary: 	1001 1001 1001 1001 	value)

FLOATING-POINT AND BCD NUMBERS PAGE 98

When arithmetic operations are performed on BCD numbers, we
have to remember that there are no special operations that are
different from binary additions and subtractions, but BCD
oomboce moot be adjusted so that they never represent a value
of more than 9 in any digit, This is where the special DAA
operation is required. How it works may be seen from some
examples:

(d) decimal binary
1234 0001 0010 0011 0100

+ 5555 0101 0101 0101 0I01
6789 3110 0111 1000 1001

hexadecimal => 6 7 8 9

Since the sum of any two digits is not greater than 9, no
adjustment was needed here.

(e) decimal
6789

+ llll
7900

hexadecimal ~~

binary
0110 0111 1000 1001
0001 0001 0001 0001
0111 1000 I001 1010

7 O 9 a wrong!

When the sum of two digits is greater than 9, a correction
in the form of a carry is required, just as it is when you add
two digits by hand. The important and simple fact about this
carry is that the computer can do it just by looking at each
successive digit, starting with the least-significant one.
This adjustment is made by means of the muA instruction. if
the value in any 4-bit digit after an add operation is
performed is greater than 9, 6 is added to it and a carry is
added to the next digit, The right digit within the byte
sends its carry to the left digit, and the left digit sends it
to the next byte by means of the carry flag. If the result is
greater than 9999, it neuunt be contained within two bytes
anyway, so it languishes in the carry bit, and the result
shows only the right fvoc digits. no long as maa is performed
after each operation, the result will never get off.

In example (m) above, if a uaa is performed after the first
(rightmost) addition wbznb yielded 9n, a would be changed to 0
and l added to 9, producing another 0 and setting the carry
bit. When the carry to added to the next byte it produces 79,
thus yielding the correct value of 7900 as the result.

(f) decimal binary --
9999 Tool lo0l l00l l00l

+ llIl 0081 0001 0001 0001
11110 A A a u

oAo by +6: l- 1 1 1 carry: 1

FLOATING-POINT AND BCD NUMBERS 	PAGE 99

Here we see that, after we perform the DAA operation, the
result is 1110, which is correct except that the first digit
is missing, but the carry bit is set.

Writing a subroutine to perform BCD addition is really
quite simple. The following subroutine uses index register IX
as a pointer to the first operand and IY for the second. The
result is stored in IX. The number of bytes in the BCD number
is set to 2 by the LD 3,2 instruction, but could be set to a
larger value by simply changing this number.

BCDADD OR 	A 	;clear carry
LD 	3,2 	;2-digit add

ADDLP 	LD 	A,(IX) ;get first operand
ADC 	A,(IY) ;add second operand
DAA 	;adjust result
LD 	(IX),A ;store result
INC 	IX 	;point to
INC 	IY 	;next bytes
DJNZ 	ADDLP 	;continue till done

This subroutine clears the carry bit at the beginning so that
it can do all the additions in one loop using ADC.

(g) 	decimal
5432

-1928
3504

hexadecimal
DAA by -6:

binary

>

0101 0100 0011 0010
0001 1001 0010 1000
0011 1011 0000 1010

3 	B 	0 	A 	wrong!
3 	5 	0 	4 	right

How does the Z-80 know whether the last operation was an
add or subtract, meaning that the DAA has to adjust the result
by +6 or -6? The answer is that the N flag is set only by
subtract operations and reset by add operations. Similarly,
the half-carry flag is set only if the right 4 bits are
greater than 9. The H flag is like an "internal" carry, since
its only function is to adjust the left digit.

These examples show that BCD arithmetic is easy to
understand. Other advantages are the simplicity of converting
numbers for printing them, which requires only a hexadecimal
print routine, and the ability to insert a decimal point
between any two digits in a series of bytes, for fractional
arithmetic.

Surprisingly, BCD arithmetic is not used by the TRS-80 for
Level II Basic or any of the standard Radio Shack software.
It thus remains one of the most underutilized resources of the
TRS-80.

LOGICAL AND
BIT OPERATIONS

12.1 Logical Operations

There is another category of computer operations that are not
as widely known as arithmetic operations. These are LOGICAL
OPERATIONS. They all operate on the individual bits of the
byte in the accumulator, which is compared to another byte
specified as the operand. There are three operations executed
by the Z-80: 	AND, OR, and XOR (exclusive OR). An AND
operation produces a 1 bit in the result only if both the
corresponding bits in the accumulator AND the operand are 1.
OR produces a 1 if the bit in either the first operand OR the
second operand, OR BOTH, are 1. XOR produces a 1 if either
the bit in the first operand or the second operand, BUT NOT
BOTH, are 1. These are summarized in the following table:

binary
accumulator 0000 1111 0 F
operand 0011 0011 3 3

result of AND 0000 0011 0 3
result of OR 0011 1111 3 F
result of XOR 0011 1100 3 C

The carry bit is ALWAYS cleared (set to zero) by the
logical operations. Logical operations never produce ones in
bits unless they are already present in the operands. 	Their
functions are to "combine" bits in various ways.

100

hexadecimal

LOGICAL AND BIT OPERATIONS 	PAGE 101

The logical operations have several applications for which
they are customarily used. AND is used to MASK OUT certain
bits in a byte. A zero in the operand byte masks out a bit,
and a one preserves it, if present. For example, in printing
hexadecimal numbers, it is necessary to print the value
corresponding to each 4-bit digit. If we want to print the
least-significant digit, we need to mask out the left four
bits. This could be done by an AND OFH or AND 15 instruction.
(When "H" is appended to numbers, it indicates that they are
hexadecimal.) 	Hexadecimal values are frequently specified as
operands to logical operations because it is possible to
translate them directly into bits.

OR is used to "combine" the values of two bytes into one.
For example, to print the value of a digit from 0 to 9, it is
necessary first to discover the value to be printed, and then
to convert it to ASCII form. The ASCII representations of the
digits 0 to 9 are 30H to 39H. It is thus necessary to put the
value 0 to 9 into the right four bits, and a "3" into the left
four bits. Assuming that the right four bits contain a 0 to
9, the "3" can be combined with the others by an OR 30H
operation.

Another use of OR is to clear the carry bit. The operation
OR A, which ORs the accumulator with itself, changes no bit
values in the accumulator, but resets the carry. AND A also
works for this purpose. These are more efficient than any
other method, because the instructions take only one byte and
4 T cycles.

Another use of the OR operation occurs when testing the
value in a double register for zero. 	The sequence of
operations:

LD 	A,H
OR

will produce a zero in A only if the values in both H and L
are zero.

One of the most frequent applications of XOR is to zero the
accumulator, which is done by the XOR A operation. This also
clears the carry bit. Other uses of XOR are somewhat more
complicated than the other logical operations. For example,
it is possible to set up a "toggle switch" using the
accumulator and an XOR operation. If A is set to 1 or 0, each
time an XOR 1 operation is executed, the value in A will
alternate between 1 and 0. 	This type of alteration is
possible only between two values.

Another such application on the TRS-80 occurs with the

LOGICAL AND BIT OPERATIONS 	PAGE .102

blinking asterisks that appear in the upper right corner of
the video display when cassette tapes are read. The ASCII
value of the asterisk is 2AH, and that of the blank space is
20H. 	The address of the upper right corner is 3C3FH. The
following sequence of operations will cause the character in
the right corner of the screen to change to the opposite
value, alternating between an asterisk and a blank:

LD 	A,(3C3FH) 	;get character
XOR 	10 	;2AH - 20H = 10
LD 	(3C3FH),A 	;replace new one

12.2 Bit Operations

Bit operations include manipulations on the individual bits
within a register or memory location. 	One of the great
improvements of the Z-80 microprocessor over the 8080 is the
enormously increased number of bit operations that the Z-80
executes. 	There are many different kinds of bit operations.
They can be divided into the categories of rotate, shift, set,
reset, test, and BCD instructions.

12.3 Rotate and Shift Instructions

SHIFT instructions move the bits within a byte from one
position to the next, in a right or left direction. 	The bit
on the end of the byte in the direction of the shift is lost,
and a zero is shifted into the bit on the opposite end.
ROTATE instructions are identical to shift instructions,
except that the bit that would normally be lost is shifted
around to the other side. All rotate and shift instructions
on the Z-80 move only one bit, so that they need to be
repeated to move the bits more than one position.

Shift and rotate instructions are complicated by the fact
that all of them use the carry bit in one way or another.
Sometimes the carry participates as an "extra" bit, producing
a 9-bit shift or rotate, and sometimes the carry is a
duplication of the end bit. ARITHMETIC shifts preserve the
SIGN hit (7) of the operand, whereas LOGICAL shifts have the
sign participate along with the other bits. 	(These are the
standard definitions of arithmetic and logical shifts. The
Z-80's SLA ("shift left arithmetic") instruction is really a
logical shift.) Most instructions are logical operations. We
will first review the instructions executed by the Z-80 and
then discuss applications.

The first four instructions in this group are the only ones
also executed by the 8080. They only operate on the
accumulator, but they also require only one byte and execute

LOGICAL AND BIT OPERATIONS 	PAGE 103

in 4 T cycles. 	They are therefore found in many existing
programs:

mnemonic description
rotate A left
circular

rotate A left

rotate A right
circular

rotate A right

operation
RLCA

RLA

RRCA

RRA

8-bit rotate: bit 7
copied into both
bit 0 and CY
9-bit rotate:
bit 7 => CY,
CY => bit 0
8-bit rotate: bit 0
copied to both bit 7
and CY
9-bit rotate:
bit 0 => CY,
CY => bit 7

The remaining instructions, all Z-80 only, allow a myriad
of operands. Any register (except. F) may be specified, or any
memory location addressed as (HL), (IX+d), or (IY+d). 	(There
is some redundancy here in that A may be specified for these
operations, duplicating the function of the instructions
above.) We will list the rotate operations first, since they
are identical to those above, except that they use different
operands. In the following table, "s" means any register (A,
B, C, D, E, H, or L) or (HL) , (IX+d) , or (IY+d):

mnemonic 	description 	operation
RLC 	s 	rotate left circular 	same as RLCA
RL 	s 	rotate left 	same as RLA
RRC 	s 	rotate right circular 	same as RRCA
RR 	s 	rotate right 	same as RRA

There are only three shift instructions on the Z-80, and
they also allow any of the operands used for the above rotate
instructions to be specified. One of the shifts is designated
as a logical shift, and two shifts as arithmetic, even though
the "arithmetic" left shift is really a logical shift as noted
above. 	All of the shifts use the carry bit as a participant
in the operation, in that the bit shifted off the end is
shifted into the carry bit. 	These instructions are as
follows:

mnemonic description 	operation
shift left arithmetic 	bits 0-7 shifted to

bits 1-CY; bit 0=0
shift right arithmetic bits 7-0 shifted to

bits 6-CY; bit 7
unchanged

shift right logical 	bits 7-0 shifted to
bits 6-CY; bit 7=0

SLA s

SRA s

SRL s

LOGICAL AND BIT OPERATIONS 	PAGE 104

Shift and rotate instructions have many useful applica-
tions. 	One of their most obvious uses is in positioning the
bits within a byte in order to perform some function. 	For
example, to print the value of a byte in hexadecimal form, it
is necessary first to print the left 4-bit digit, and then the
right 4-bit digit. Converting a digit to ASCII form requires
putting the value into the right four bits and adding an
offset. 	If the value is between 0 and 9, the offset is 30H,
but if it is between 10 and 15, the offset is 37H, because 37H
+ 10 = 41H (ASCII "A"). To move the left four bits over to
the right, we could use the SRL operation four times in
succession. 	This would automatically clear the right four
bits, since zero is shifted into the left end. It would not
necessarily be the best way of programming this function,
however. Four SRL operations require 8 bytes and 32 T cycles
to execute, assuming that the operand is in the accumulator.
We could instead use four rotate instructions, and then mask
out the left four bits with an AND instruction. Four RRA or
RRCA operations require only 4 bytes and 16 T cycles, and the
ensuing AND OFH requires 2 bytes and 7 T cycles.

One of the most important applications of shift
instructions is that of multiplication and division by powers
of 2. When a byte is shifted left one bit, the value it
contains is multiplied by 2, and when it is shifted right the
value is divided by 2. This is illustrated by the following
series of SLA operations:

decimal CY
- 5

x 2=10 0
x 2=20 0
x 2=40 0
x 2=80 0

x 2=160 0
x 2=320 1

binary 	hexadecimal
0000 0101 	0 5 	original value
0000 1010 	0 A 	after 1st SLA
0001 0100 	1 4 	after 2nd SLA
0010 1000 	2 8 	after 3rd SLA
0101 0000 	5 0 	after 4th SLA
1010 0000 	A 0 	after 5th SLA
0100 0000 	4 0 	after 6th SLA

We can see that the result is no longer valid after the
sixth SLA operation, because it should be a larger value than
can be contained in a single byte. The carry bit can be used
to test whether this condition has occurred, however, so that
a subroutine that uses this method can take account of it. If
we were using signed integers, the result would be incorrect
after the fifth SLA, since a 1 was shifted into the sign bit.
In this case, we would have to check the S flag (P or M
conditions).

A more complicated extension of this principle can be used
to implement a subroutine for multiplication by 10. This
method depends on the fact that 10=8+2, both of which are
powers of 2. The following sequence of instructions

LOGICAL AND BIT OPERATIONS 	PAGE 105

multiplies the value in the accumulator by 10, using B to save
the value after the first shift:

SLA 	A 	;multiply by 2
LD 	B,A 	;save in B
SLA 	A 	;x 4
SLA 	A 	;x 8
ADD 	A,B 	;value x 8 + value x 2

Additional information about multiplication and division is
contained in chapter 13.

12.4 Bit Set, Reset, and Test Operations

SETTING a bit means setting it to 1. 	RESETTING it means
setting it to 0. TESTING a bit, which is done by the "BIT"
instructions, means a test for zero, the result being
indicated by the Z flag. 	The important thing about these
instructions is that they allow the same large number of
operands as the rotate and shift instructions. 	In the
following table, "s" indicates any of the operands A, B, C, D,
E, H, 	L, 	(HL), 	(IX+d), or 	(.IY+d). 	"n" indicates the bit
number, which is 0 to 7:

mnemonic

description
bit test
set bit
reset bit

operation
BIT 	n,s
SET 	n,s
RES 	n,s

test bit n in s
bit n in s set to 1
bit n in s set to 0

These bit operations have many obvious applications. 	One
of them is simply to use one byte as a test word for up to
eight "yes-no" options. 0 can indicate "no" and 1 "yes" 	(or
vice versa). In our example of multiplication by 2 above, we
could test for the presence of the sign bit by a "BIT 7,A"
instruction.

12.5 BCD Operations

There are two special BCD rotate instructions that have highly
specialized applications. 	(BCD numbers were described in
chapter 11. 	They consist of two 4-bit digits containing
values from 0 to 9 in each digit. For the purpose of these
operations, the digits can contain any values.) The two BCD
rotates, RLD and RRD, operate jointly on the contents of the
accumulator and on the memory location addressed by the HL
register pair, and they shift four bits at a time. 	In each
case, the left four bits of A (bits 4-7) are unchanged, and
the remaining three digits, contained in bits 0-3 of A,
together with the two BCD digits in (HL), are shifted. 	RRD

LOGICAL AND BIT OPERATIONS PAGE 106

shifts to the right and uco to the left. 	The operation of
these instructions can be diagrammed as follows (abvwimJ the
contents as decimal digits rather than in binary form):

A bits
original values
after nQ}
original values (repeated)
after oao

4-7 0-3 (ac) bits 4-7 0-3
0

--5—
4 3

0 4] 5
0 5 4]
0 3 5 4

The uses of these operations are clearly restricted to
specialized applications involving uco numbers, which are not
used by any of the standard cn8-80 software.

SOFTWARE
MULTIPLICATION

AND DIVISION

One of the greatest limitations of all 8-bit microprocessors
is that they have no instructions that execute multiplication
and division. 	Therefore, all such operations must be
performed through programming, by means of repetitively
executing additions and subtractions. 	This chapter is
intended to show the reader how these operations are carried
out in general, without covering the subject exhaustively. We
will restrict our consideration to integer operations of
various byte lengths. Multiplication and division are two of
the most complicated and specialized subjects of microcomputer
programming. Arithmetic computing ability is one of the few
areas where the newer 16-bit microprocessors have a distinct
advantage over the Z-80 and the 8080.

You may never have been aware of these limitations of the
TRS-80, because Level II Basic executes all arithmetic
operations -- even exponentiation. 	When you realize that
Level II contains these facilities for three different number
formats, you can better appreciate the extent to which its
designers have gone for your convenience. The one thing you
probably do notice, particularly about exponentiation, is that
it takes a noticeable amount of time to execute. 	A few
seconds to evaluate one complicated mathematical formula may
correspond to millions of machine operations.

107

SOFTWARE MULTIPLICATION AND DIVISION 	PAGE 108

13.1 8-Bit Multiplication

First, let us note a few general points about multiplication.
The two numbers that are multiplied together are called the
MULTIPLIER and the MULTIPLICAND, and the result is called the
PRODUCT. 	The product of two numbers of a given length may
require twice as many digits to contain the result (99 x 99 =
9801). 	In binary terms, the product of two 8-bit numbers may
require 16 bits, and the product of two 16-bit numbers may
require 32 bits. (The maximum value that can be contained in
a byte is 255. 255 x 255 = 65025, which requires 16 bits but
is less than the maximum value that can be contained in 16
bits.) Any routines that we write for multiplication will
have to take this fact into account.

When we learned to do arithmetic in school, we learned that
multiplication can be performed by repetitively adding one
number another number of times. 	The most direct type of
multiplication subroutine can work in the same way. The
following example makes use of this method. 	When it is
entered, the multiplicand is in A and the multiplier in B. The
result is returned in HL, to reflect the fact that the product
of two 8-bit numbers may extend to 16 bits, as mentioned
above.

;unsigned 8-bit multiplication subroutine
;on entry, A=multiplicand, B=multiplier
;on exit, HL=product, B=0
MULT8P LD 	L,A 	;multiplicand to L

LD 	H,0 	;zero high order bits
INC 	B 	;test B
DEC 	B 	;for zero
JR 	Z,ZERO ;B=0
DEC 	B 	;if B=1,
RET 	Z 	;A=product
PUSH 	DE 	;save DE
LD 	D,H 	;move HL
LD 	E,L 	;to DE

MULOOP ADD 	HL,DE 	;add multiplicand
DJNZ 	MULOOP ;continue B (-1) times
POP 	DE 	;restore DE
RET 	;done

ZERO 	LD 	L,0 	;result is zero
RET

This subroutine works by placing the multiplicand into both
L and E, and clearing H and D. DE is added to HL (B-1) times.
If B=1, we return after loading HL because A times 1 is A. If
B=0, the result is zero because anything times zero is zero.
The method of INCrementing and DECrementing B is a quick way

SOFTWARE MULTIPLICATION AND DIVISION 	PAGE 109

to test whether B is zero, without changing the values in any
register.

One of the problems with this subroutine is that it is
valid only for UNSIGNED numbers. If we want to take the sign
bit into account, another procedure is necessary. The
simplest way of implementing signed multiplication is to check
the signs on entry, do the multiplication on positive numbers
as above, and readjust the sign on exit, if necessary.

The following subroutine uses repetitive addition to
perform 8-bit signed multiplication, using the same registers
as above. The XOR operation is used to create the sign of the
product ((+ x +) and (- x -) are both positive. Only (+ x -)
and (- x +) are negative). OR A (which clears the carry bit
and sets the condition codes to reflect the value of A without
changing it) is used to test for positive or negative values.

;signed 8-bit multiplication by repetitive addition
;on entry, A=multiplicand, B=multiplier
;on exit, HL=product, B=0, A destroyed
MULT8 	LD 	L,A 	;save A temporarily

LD 	H,0 	;zero high bits
INC 	B 	;test for
DEC 	B 	;B=0
RET 	Z 	;product=0
XOR 	B 	;form product sign
PUSH 	AF 	;save sign in stack
LD 	A,8 	;test value of B
OR 	A
JP 	P,TSTA 	;if + skip
NEG 	 ;create positive equivalent
LD 	B,A 	;replace

TSTA 	LD 	A,L 	;retrieve A
OR 	A 	;test value
JP 	P,MUL 	;if +
NEG 	 ;positive equivalent
LD 	L,A 	;replace in L

MUL 	DEC 	B 	;if B=1,
JR 	Z,ADJUST 	;product=multiplicand
PUSH 	DE 	;save DE
LD 	D,H 	;move HL
LD 	E,L 	;to DE
ADD 	HL,DE 	;add multiplicand
DJNZ 	$-1 	;continue till B=0
POP 	DE 	;restore DE

ADJUST POP 	AF 	;retrieve sign
OR 	A 	;test sign of product.
RET 	P 	;ok if plus
LD 	A,L 	;form negative equivalent
CPL 	 ;complement
LD 	L,A 	;replace in L

SOFTWARE MULTIPLICATION AND DIVISION 	PAGE 110

LD 	A,H 	;do same with H
CPL
LD 	H,A 	;replace
INC 	HL 	;NEG=CPL+1
RET 	 ;done

While multiplication by repetitive addition does work, it
is extremely slow compared with other ways of implementing the
operation. 	It should be used only when small numbers are
being multiplied. The usual way in which multiplication is
carried out involves a process similar to the paper-and-pencil
method of performing the operation, where you align the
product of each additional digit one position to the left to
indicate that it is a greater power of 10, such as in the
following examples:

123 	 456
x 456 	x 123

738
615
492

1368
912
456

56088 	56088

A binary multiplication might be written out as follows:

	

binary 	hexadecimal 	decimal

	

0010 1011 	2BH 	43

	

x 0001 0101 	15H 	21

	

0010 1011 	387H 	43
0 0000 000 	 86
00 1010 11
000 0000 0 	 903
0010 1011

0011 1000 0111

Note that it is very easy to write out the product of a
binary number, because the result is either the original
number or zero. In the first, third, and fifth rows above, we
have the same number, the multiplicand, the only difference
being the vertical alignment. Spaces are placed every four
bits to increase readibility.

This method of multiplication, shown below, makes use of
the fact that when you add the value in the HL register pair
to itself, the result is shifted left one bit:

SOFTWARE MULTIPLICATION AND DIVISION 	PAGE 111

0000 1010
0000 1010

0001 0100

0010 1011
0010 1011

0101 0110

hexadecimal
0A2BH
0A2BH

1456H

decimal
2603
2603

5206

The subroutine below uses this principle to create unsigned
multiplication, as above. 	The bits of the multiplier are
tested successively, and the multiplicand is added to the
product if the tested bit is one. If it is zero, the addition
is skipped. The product is then shifted left to be in
position for the next bit. 	This subroutine uses the same
registers as those above.

;unsigned 8--bit multiplication
;on entry, A=multiplier, B=multiplicand
;on exit, HL=product, B=0, A destroyed
MULT8P PUSH 	DE 	;save DE

LD 	E,B 	;multiplicand to E (LSB)
0,0
	

;clear high bits of DE
B,8
	

;8 bit multiply
HL,0
	;zap product

HL, HL
	;shift product left 1 bit

;shift multiplier bit into C
NC,MULP2
	;skip addition if zero

HL, DE
	;else add multiplicand

MULOOP
	;continue through 8 bits

DE
	;restore DE

;done

13.2 16-Bit Multiplication

16-bit multiplication can be carried out in a manner exactly
analogous to 8-bit multiplication, as long as we remember that
the product may have to occupy 32 bits. 	If we want to
implement a practical method for 16-bit operations, as in
Level II Basic integer arithmetic, then we would say that
OVERFLOW exists when the product requires more than 16 bits.
This could either cause an error condition, or we could simply
use the 16 low-order bits, producing a result modulo 65536.

The following subroutine performs unsigned 16-bit
multiplication, on a multiplier and multiplicand contained in
the BC and DE register pairs. 	The low-order bits of the
product are returned in HL, and the high-order or overflow
bits in DE. 	It is the calling program's responsibility to
test DE for zero to determine whether overflow has occurred,
and proceed appropriately. 	This subroutine uses A as a
counter for the number of bits in the operation, and uses the

LD
LD
LD

MULOOP ADD
RLCA
JR
ADD

MULP2 	DJNZ
POP
RET

SOFTWARE MULTIPLICATION AND DIVISION 	PAGE 112

more efficient method of shifting the product left for each
successive bit rather than repetitive addition.

;16-bit unsigned multiplication
;on entry, BC=multiplicand, DE=multiplier
;on exit, product in DE (high-order) and HL (low-order)
MULT16 LD 	A,16 	;bit count

LD 	HL,0 	;zero initial product
MLT1 	ADD 	HL,HL 	;shift product left 1 bit

RL 	E 	;shift low product to carry
RL 	D 	;multiplier bit to carry
JR 	NC,MLT2 	;skip if multiplier bit 0
ADD 	HL,BC 	;else add multiplicand
JR 	NC,MLT2 	;skip if no carry to hi bits
INC 	E 	;increment 3rd byte
JR 	NZ,MLT2 	;skip if no carry to 4th byte
INC 	D 	;increment 4th byte

MLT2 	DEC 	A 	;bit count
JR 	NZ,MLT1 	;continue till 0
RET 	 ;done

The "RL E" operation shifts the left bit of register E into
the carry, and the immediately following "RL D" shifts the bit
from the carry into bit 0 of D and bit 7 of D to the carry.
This is, in effect, a double-precision left shift. The last
bit shifted into D is the bit that we test for the
multiplication, and if it is zero we skip the intervening
steps. Once the multiplicand has been added, we have to find
out if there is a carry to the third or fourth bytes. Since
the "ADD HL,BC" operation produces a carry in this case, all
we need to do is to test the carry bit after this operation.
If there is one, E is incremented, and then we need to know if
there is a carry from E to D. Unfortunately, the "INC E"
operation does not affect the carry, but the only time a carry
would be needed would be when the value of E was 1111 1111
binary, producing zero after the incrementing. We can
therefore test the zero flag in this instance.

Signed 16-bit multiplication can be done in the same manner
as signed 8-bit multiplication, the only additional
complication being that negation of the product must he
carried out on all four bytes of the result. The following
subroutine carries out this procedure, using the same
registers as above.

;signed 16-bit multiplication
;on entry, multiplier and multiplicand in BC and DE
;on exit, product in DE + HL
MPY16 	LD 	A,B 	;determine product sign

XOR 	D 	;sign in bit 7 of high byte
PUSH 	AF 	;save sign in stack

SOFTWARE MULTIPLICATION AND DIVISION 	PAGE 113

LD 	A,B 	;test sign
OR 	A 	;of multiplier
JP 	P,MPY1 	;skip if positive
LD 	HL,S 	;negate BC by subtracting

;from zero. No need to clear
SBC 	HL,BC 	;carry because of prey. OR A
LD 	B,H 	;transfer HL
LD 	C,L 	;to BC

MPY1 	LD 	A,D 	;test sign
OR 	A 	;of multiplicand
JP 	P,MPY2 	;ok if plus
LD 	HL,0 	;negate DE
SEC 	HL,DE 	;by subtracting from zero
EX 	DE,HL 	;transfer to DE by exchange

MPY2 	LD 	A,16 	;bit count
LD 	HL,0 	;initial product

MPY3 	ADD 	HL,HL 	;same method as above
RL 	E 	;(see comments above)
RL 	D
JR 	NC,MPY4
ADD 	HL,BC
JR 	NC,MPY4
INC 	E
JR 	NZ,MPY4
INC 	D

MPY4 	DEC 	A
JR 	NZ,MPY3
POP 	AF 	;retrieve sign of product
OR 	A 	;test it
RET 	P 	;done if plus
XOR 	A 	;form negative equivalent
SUB 	L 	;by subtraction from zero
LD 	L,A 	;replace L
LD 	A,0 	;clears A but not carry
SEC 	A,H 	;propagate carry to 2nd byte
LD 	H,A 	;replace H
LD 	A,0 	;clear A but not carry
SBC 	A,E 	;3rd byte
LD 	E,A 	;replace
LD 	A,0 	;clear A but not carry
ABC 	A,D 	;4th byte
LD 	D,A 	;replace
RET 	 ;done

This subroutine uses the method of producing a negative
equivalent of a positive number by subtracting it from zero.
The negation of the product propagates the carry bit through
four bytes (from L to H to E to D).

SOFTWARE MULTIPLICATION AND DIVISION 	PAGE 114

13.3 8-Bit Division

When division is performed, a number called the DIVIDEND is
divided by the DIVISOR, producing a QUOTIENT and a REMAINDER.
As long as we are restricting our consideration to integers,
we have only to return these two values and not worry about
their meaning. When performing division, we have the opposite
situation from multiplication with regard to the magnitude of
the numbers involved. A 16-bit dividend may be divided by an
8-bit divisor to produce an 8-bit quotient. There is one
consideration that must be taken into account here. 	The
quotient must be able to be contained in 8 bits. If this is
not true, a DIVIDE FAULT condition exists. In addition, the
divisor must not be zero -- at least, in any subroutine that
we write for division, we must guard against causing the
program to go into an infinite loop on a divide-by-zero.

As with multiplication, the simplest kind of division to
understand is a method that uses successive subtractions. The
following subroutine parallels the unsigned 8-bit
multiplication above. On entry, HL contains the dividend and
A the divisor. On exit, the quotient is returned in B and the
remainder in L. The previous value of DE is lost.

;unsigned 8-bit division
;on entry, HL=dividend, A=divisor
;on exit, B=quotient, L=remainder, DE destroyed
DIVBP 	OR 	A 	;test A for zero

JR 	Z,DZERO 	;divide by zero
LD 	B4O 	;zero initial quotient
LD 	E,A 	;divisor to low bits of. DE
LD 	D,0 	;zero high bits

DIVLP 	OR 	A 	;clear carry
SBC 	HL,DE 	;subtract divisor
JP 	M,REM 	;if negative, done
INC 	B 	;increment quotient
JR 	DIVLP 	;continue

REM 	ADD 	HL,DE 	;find remainder
RET 	 ;done

DZERO 	 ;set error code

This subroutine makes no effort to catch a divide fault
condition. 	It simply allows the process to continue by
incrementing B until HL goes negative. Therefore, the result
is actually the quotient modulo 256, and may be incorrect.

The method of successive subtraction is also very slow, and
a process of shifting, similar to that for multiplication, can
be implemented instead. The following subroutine achieves the
same result as that above, but uses only eight subtractions.
The quotient is returned in L and the remainder in H.

SOFTWARE MULTIPLICATION AND DIVISION 	PAGE 115

;unsigned 8-bit division
;on entry, HL=dividend, A=divisor
;on exit, L=quotient, H=remainder
DIV8P 	LD 	B,8 	;bit count

LD 	E,0 	;clear low-order byte
LD 	D,A 	;DE=divisor

DV1 	ADD 	HL,HL 	;shift divisor left
SBC 	HL,DE 	;subtract divisor
JR 	C,DV2 	;if C then high dvdnd < dvsr
INC 	HL 	;if NC set quotient bit to 1
JR 	DV3 	;skip following add

DV2 	ADD 	HL,DE 	;restore high dividend
DV3 	DJNZ 	DV1 	;continue for 8 bits

RET 	 ;done

The "ADD HL,HL" at DV1 clears the lowest bit of L, which
will be used to hold the quotient bit. 	Note that the
subtraction of the divisor affects only the high-order byte,
because we placed it into D and cleared E before starting. If
the subtract produces a carry, then the high-order dividend
was less than the divisor -- in other words, the subtract was
not valid. 	In this instance, the bits are restored by the
following "ADD HL,DE".

Now let us examine the divide fault condition more
carefully. First, the highest bit of the dividend must not be
a one, at least if the above method is used, because the "ADD
HL,HL" will shift it out into the carry, before the first
subtraction. 	Second, the divisor cannot be zero. In the
remaining instances, the divide fault can exist only if the
high-order byte of HL (H) is equal to or greater than the
divisor (A). Some examples will clarify this:

HL = 	16384 4000H
A = 	48 30H

16384 / 48 = 	341 	R 16 155H

HL = 	28672 7000H
A = 	64 40H

18672 / 64 = 	448 	R 0 1C0H

HL = 	28672 7000H
A = 	112 70H

28672 / 112 = 	256 	R 0 100H

HL = 	16384 4000H
A = 	80 50H

28672 / 80 = 	204 	R 64 CCH

Each of the quotients in the 	first three examples are
greater than 255, requiring an additional 	byte. 	This byte

SOFTWARE MULTIPLICATION AND DIVISION 	PAGE 116

comparison of A with H can be used as a method of checking for
a divide fault. 	The following is an extension of the
preceding subroutine: 	when added to the beginning, it will
jump to the location DFAULT (not shown) if the divide fault
condition exists, otherwise proceed as before.

;check for divide fault condition
DIV8F 	BIT 	7,H 	;test high bit of H

JR 	NZ,DFAULT 	;divide fault if 1
CP 	H 	;compare high dvdnd, divisor
JR 	C,DIV8P 	;ok if divisor less
JR 	DFAULT 	;else divide fault

DIV8P 	 ;(as above)

The "JR C,DIV8P" also takes care of the situation where A
is zero, because in that case H cannot be less than A.

13.4 16-Bit Division

By 16-bit division, we mean of course division of a 32-bit
dividend by a 16-bit divisor producing a quotient and
remainder of 16 bits each. 	A subroutine to perform this
operation is a simple extension of the 8-bit subroutines
above. The following subroutine divides the 32-bit dividend
in H, L, B, and C by the 16-bit divisor in DE. The quotient
is returned in BC and the remainder in HL. 	If there is a
divide fault, the program jumps to location DFAULT (not
shown).

;16-bit unsigned division
;on entry, dividend in H,L,B,C (highest to lowest),
;divisor in DE
;on exit, quotient in BC, remainder in HL, A=0
DIV16 	BIT 	7,H 	;test highest divident bit

JR 	NZ,DFAULT 	;divide fault if 1
PUSH 	HL 	;save high dividend bytes
PUSH 	DE 	;save divisor
OR 	A 	;clear carry
SBC 	HL,DE 	;subt. divisor frm hi dvdnd
JR 	NC,DFAULT 	;fault if NC
POP 	DE 	;get back divisor
POP 	HL 	;get back high dividend
LD 	A,16 	;bit count

DIVD1 	SLA 	C 	;shift dividend left
RL 	B 	;shift into B
ADC 	HL,HL 	;add HL + carry from B
SBC 	HL,DE 	;subtract divisor
JR 	NC,DIVD2 	;ok if no carry
ADD 	HL,DE 	;else add back
JR 	DIVD3 	;try next bit

SOFTWARE MULTIPLICATION AND DIVISION 	PAGE 117

DIVD2 	INC 	C 	;set quotient bit to 1
DIVD3 	DEC 	A 	;decrement bit count

JR 	NZ,DIVD1 	;continue 16 times
RET 	 ;done;

The "SLA C" shifts the lowest byte of the divident left,
clearing bit 0 and shifting bit 7 into the carry. The
following "RL B" shifts the carry into bit 0 of B, thus making
this a 16-bit shift. The following "ADC HL,HL4 shifts HL left
one bit, but it also picks up the carry from bit 7 of B. 	The
bit vacated by the "SLA C" is where the quotient is stored,
and the quotient is propagated into B by the double left
shift.

A 16-bit signed divide subroutine is not shown, although it
is a simple matter to construct one using the same method
shown above for 8-bit division.

3L

~~n~~ ~~~~
~~~ ~~v ~~~~~~"~~ ~ CASSETTE ~ ~~ ~~~~ ~~ ~ 

~~~~~~ 
~~~~~~J~ OUTPUTa"mx~ "~m~~  

Transferring data between memory and the cassette tape 
recorder is similar to reading the keyboard or displaying 
characters on the video monitor. It is not really necessary 
for a programmer to know bow such a transfer works, as long as 
he knows how to use the oom subroutines that carry out the 
essential opecatioua. one important difference between the 
keyboard and video display on the one hand, and the cassette 
recorder on the other, is that the former are memory mapped, 
whereas the oaoaotta recorder is interfaced through an 
input/output port, number 255 (hexadecimal rr), which also 
controls the 32- or 64-character mode of the video display. 
Thus, only certain bits of this port are used. The disks and 
Iioa printer are also memory-mapped, whereas the RS-232-C 
interface and various other peripherals are interfaced through 
ports. The zmS-80 has much comn for expansion of input and 
output de:i:eo using oitbcc meth:d, 

The addresses of n0m subroutines that are used for cassette 
input and output have been mentioned above in chapter 5, but 
they will be reviewed here in more detail. All are located 
between addresses 0lo9B and 03138. ("o^ is often appended to 
addresses to remind you that they are hexadecimal numbers.) 

118 



CASSETTE INPUT AND OUTPUT 	PAGE 119 

14.1 Cassette ROM Subroutines 

Address 	Function  
01F8H 	Turns cassette oft. Uses register A. 
0212H 	"Define drive": A=0 for cassette 1 or 1 for 

cassette 2. 
Turns on the proper cassette drive and selects it 
for subsequent operations. 

0235H 	Read byte, which is returned in A. 
Uses no other registers. 

0264H 	Write byte in A to cassette. 
Uses no other registers. 

02870 	Write leader and sync byte. Uses AF, C. 
02960 	Read leader and sync byte. Uses AF. Two 

asterisks appear in the upper right corner of the 
video display when leader and sync byte are found. 

03140 	Reads two bytes (LSB/MSB) and transfers to HL. 
Uses AF. 

All cassette input and output operations in assembly 
language can be done using these subroutines. 	All standard 
tape formats are readable. Some programmers have developed 
non-standard methods that encode the bits in some different 
way. 	These operations are beyond the scope of this 
discussion. 

The beginning of a file on the cassette tape is signified 
by a "leader and sync byte", which is actually a succession of 
255 zeros followed by A5 (the sync byte). Each bit of data is 
read from the tape separately. This means that the timing of 
the routine that reads the bits is extremely crucial. This is 
why you must disable interrupts (CMD"T") in Disk Basic when 
reading cassettes. It is also why TRS-80 owners who have had 
the clock speed modified must switch to the older, slower 
speed in order to read standard cassette tapes. 

Once the cassette tape is turned on and the leader and sync 
byte located or written, it is the programmer's responsibility 
to keep up with the speed of the cassette in order to read or 
write data properly. (Writing data may be less crucial than 
reading it.) The data-transfer speed of the cassette is 500 
baud ("baud" means "bits per second"), so that a bit must be 
read or written every 2 milliseconds. 	What this means is 
that, for most purposes, all you can do is to read or write 
data into or out of memory and stop the cassette when you want 
to do some computation. Each time you stop the cassette, you 
must start it again with a leader and sync byte combination, 
to make sure that no data is lost due to the start and stop 
motion of the cassette. Any program that does not keep up 
with the 500-baud data transfer rate will lose bits of data, 
thus reading incorrect values. 



CASSETTE INPUT AND OUTPUT 	PAGE 120 

14.2 Tape Formats 

To keep up with the cassette's speed, standard tape formats 
have been developed by Radio Shack to indicate what the data 
on the tape represents, where it goes, when to stop the 
cassette, and what to do after stopping. There are four 
standard tape formats: Basic programs, Basic data, machine-
language object tapes (the SYSTEM format), and 
Editor/Assembler symbolic-program files. Other formats, such 
as data files for the Electric Pencil program, have been 
devised for various reasons, but will not be discussed here. 

1. Machine Language Object (SYSTEM) Tapes 

An "object program" is a program in machine code ready to 
run on a computer. When stored on an external medium such as 
a cassette tape, it is necessary only to dump it into memory 
and jump to the starting location. 

The object-program format is also known as the SYSTEM 
format because of the Basic command used to read such tapes. 
Data is written on the tape in the form of blocks less than 
256 bytes in length. 	Each block begins with a header byte 
identifying what kind of block it is. There are three types 
of blocks: 	FILENAME, DATA, and ENTRY. FILENAME is first, 
followed by any number of DATA blocks. The ENTRY block comes 
last, after which the cassette is turned off. The whole tape 
has the following structure: 

55H 
6 bytes (ASCII), filled with 
blanks if name less than 6 
characters. 
3CH 
Number of data bytes to 
follow (1-256) 
2 bytes, LSB/MSB, indicating 
where data is to be loaded 

78H 
2 bytes, LSB/MSB. 

(Leader and Sync Byte) 
Filename Header 
File Name 

Data Header 
Count Byte 

Load Address 

(Other Data Blocks) 
Entry Header 
Entry Address 

The fact that each data block has its own address means 
that data can be loaded anywhere in memory, and that the same 
tape can contain data that goes into several different areas. 
Usually, only the Editor/Assembler program produces such tapes 
(through the use of different ORG statements), because 
monitors such as TBUG or Monitors 3 and 4 (as well as the 
TAPEDISK utility program) require that you specify one 



CASSETTE INPUT AND OUTPUT 	PAGE 121 

contiguous block. If the checksum is wrong, or if the header 
byte is not 55, 3C, or 78, an error is produced. 	If reading 
the cassette under SYSTEM, a "C" replaces one of the asterisks 
in the upper right corner. 

2. Editor/Assembler Source Program Tapes 

Source tapes for the Editor/Assembler program have a tormat 
different from other tapes: 

(Leader and Sync Byte) 
Filename Header 	D3H 
File Name 	6 bytes (ASCII), padded with 

blanks 

Individual program statements: 
Line Number 	5 bytes, ASCII-encoded, 

with bit 7 (parity) set 
Statement Code 	(Any length). TAB (right 

arrow) key encoded as 09. 
Carriage Return 	0D (ENTER key) 
(Last statement - END - encoded in same manner) 

End Byte 	lAH (shift down-arrow) 

This format is essentially a dump of the memory area that 
holds the source program when running the Editor/Assembler 
program, except that when the program resides in memory, the 
line numbers are stored in two bytes (LSB/MSB). The tape thus 
takes more room than the program in memory. This is also the 
format used to hold symbolic files on disk. 

3. Level II Basic Program Tapes 

A Level II Basic program tape is essentially a dump of the 
program as it is stored in memory. This is not the way in 
which you type it in, nor the way it is listed when you print 
it, because all of the key words are translated into a binary 
code. Statement numbers are stored in two bytes. This is why 
they may have a maximum value of 65529 (65535 less a few 
values used for special purposes). The only recognizable data 
is the ASCII text in PRINT statements, variable names, and 
constants. The complete format is as follows: 



CASSETTE INPUT AND OUTPUT 	PAGE 122 

(Leader and Sync Byte) 
Header 
File Name 
Program Statements 

End Flag 

D3 D3 D3 
First byte only, ASCII 
Starts loading directly into 
42E9H (Level II) 
or 68BAH (Disk Basic) 
00 00 00 

This is also the standard format used to store Basic 
programs on disk, except that disk storage also provides the 
"ASCII" option (SAVE "PGM",A), which stores the program in 
exactly the same way that it is printed by a LIST command. 

4. Level II Basic Data Tapes 

Because of the one important point mentioned above -- that 
you must write a new leader and sync byte each time that you 
start or stop the cassette -- Level II Basic data tapes are 
stored in a very inefficient manner. Each time a PRINT #-1 or 
INPUT #-1 is executed, a new leader and sync byte is written 
or read. 	A Basic program can take advantage of this 
situation, by trying to include as much data as possible 
within a single statement, but it is impossible to escape the 
fact that most of the time is spent reading the leader and 
sync bytes. 

The exact format of a data tape is so simple that a table 
is not necessary. 	After the leader and sync byte comes the 
data itself, terminating in a carriage return. 	Individual 
items in the list are separated by commas. For this reason a 
comma cannot be included in a string saved on cassette tape 
(nor can a carriage return). Strings are written simply as a 
series of characters. All numbers, whether they represent 
integers or single- or double-precision values, are stored as 
ASCII strings surrounded by blank spaces. 	Thus, a number 
could be written as an integer and read as a single- or 
double-precision number or string. 	The decimal point is 
included if present. A string consisting of numerals can be 
written as a string and read as a number, but if it contains 
any non-numerical characters, an error is produced. The 
warning in the LEVEL II BASIC REFERENCE MANUAL is not totally 
correct. 	It is possible to read data in some form other than 
that in which it was written, but you must always read the 
same number of items. The carriage-return character (ODH) is 
the cue to stop the cassette when data is being read. 



CASSETTE INPUT AND OUTPUT 	PAGE 123 

14.3 Programming Cassette Input and Output 

The most useful format for an assembly-language programmer is 
that for machine-language object tapes. 	Using this format, 
both programs and data can be saved, as long as they are read 
into or out of a contiguous memory block. The program shown 
below reads an object tape into memory, even blinking the 
asterisk in the upper right corner like the SYSTEM command. 
Rather than having you specify the name, however, the name is 
read off the tape and printed on the video display. When the 
program has been read completely, the starting, ending, and 
entry addresses are also printed. The program then waits for 
you to type a key. 	If you type ENTER, execution of the 
program read into memory begins. 	Otherwise, 'the system is 
rebooted. 

;PROGRAM TO READ MACHINE-LANGUAGE OBJECT TAPES 
REBOOT EQU 	0 	;ROM ADDRESSES 
VIDEO EQU 33H 
INPUT EQU 49H 
CASOFF EQU 	1F8H 
DEFDRV EQU 	212H 
RSYNC EQU 296H 
RBYTE EQU 235H 
RHL 	EQU 	314H 

ORG 	7E00H 	;NEAR TOP OF 16K 
START CALL 	CLS 	;CLEAR SCREEN AT START 
READY 	LD 	HL,FREADY 	;PRINT "READY CASSETTE" 

CALL 	PRINT 
CALL 	INPUT 	;WAIT FOR KEYIN 
LD 	HL,FNAME 	;MESSAGE 
CALL 	PRINT 
XOR 	A 	;CASSETTE 1 
CALL 	DEFDRV 
CALL 	RSYNC 
CALL 	RBYTE 	;FIRST BYTE 
CP 	55H 	;FILENAME HEADER 
JR 	NZ,CERR 	;WRONG TAPE IF NOT 
LD 	B,6 	;6-LETTER NAME 
CALL 	RBYTE 
CALL 	DISP 	;PRINT ON SCREEN 
DJNZ 	$-6 
CALL 	RBYTE 	;FIRST BLOCK 
CALL 	RDH 
LD 	(ADR1),HL 	;SAVE 1ST LOC 
JR 	CLP2 

CLP 	CALL 	RBYTE 	;1ST BYTE OF BLOCK 
CP 	78H 	;ENTRY? 
JR 	Z,CEND 
CALL 	RHD 



CASSETTE INPUT AND OUTPUT 	PAGE .124 

CLP2 	ADD 
LD 

CRD 	CALL 
LD 
ADD 
LD 
INC 
DJNZ 
CALL 
CP 
JR 
PUSH 
LD 
LD 
CP 
JR 
LD 
LD 
POP 
JR 

CHKSM 	LD 
JR 

CERR 	LD 
CALL 
CALL 
JR 

CEND 	LD 
CALL 
LD 
CALL 
LD 
CALL 
LD 
CALL 
LD 
CALL 
CALL 
CP 
JP 
JP 

RHD 	CP 
JR 
CALL 
LD 
JP 

PRINT 	LD 
AND 
CALL 
BIT 
RET 
INC 

A,L 
C,A 
RBYTE 
(HL) ,A 
A,C 
C,A 
HL 
CRD 
RBYTE 
C 
NZ,CHKSM 
HL 
HL,3C3FH 
A,'*' 
(HL) 
NZ,$+4 
A,' 	' 
(HL) ,A 
HL 
CLP 
HL,FCHKSM 
$+5 
HL,FCERR 
PRINT 
CASOFF 
READY 
(ADR2),HL 
RHL 
(ADR3) ,HL 
CASOFF 
HL,(ADR1) 
PHL 
HL,(ADR2) 
PHL 
HL,(ADR3) 
PHL 
INPUT 
13 
NZ,REBOOT 
(HL) 
3CH 
NZ,CERR 
RBYTE 
B,A 
RHL 
A, (HL) 
7FH 
DISP 
7, (HL) 
NZ 
HL  

;COMPUTE CHECKSUM 
;SAVE IN C 
;READ DATA 
;SAVE IN MEMORY 
;COMPUTE CHECKSUM 
;SAVE IN C 
;NEXT LOC 
;CONTINUE THRU BLOCK 
;CHECKSUM FROM TAPE 
;OK? 
;IF NOT, BAD READ 

;RIGHT CORNER OF VIDEO 
;BLINK 
;IF '1" ALREADY THERE, 
;CHANGE TO 
;BLANK 
;STORE 

;GET NEXT BLOCK 
;CHECKSUM ERROR 

;READ ERROR 

;STOP TAPE 
;TRY AGAIN 
;ENDING ADDRESS 
;GET ENTRY ADDRESS 
;SAVE 
;STOP 
;PRINT ADDRESSES 
;START 
;END 

;ENTRY 

;WAIT FOR KEYIN 
;ENTER KEY 
;REBOOT IF NOT 
;ELSE EXECUTE PROGRAM 
;CODE FOR DATA BLOCK 
;IF NOT DATA, NOGOOD 
;LENGTH 
;SAVE IN B 
;GET ADDRESS, RETURN 
;PRINT MESSAGE 
;MASK PARITY 

;DONE IF NZ 

;NEXT LOC 



	

CASSETTE INPUT AND OUTPUT 	PAGE 125 

JR 	PRINT 	;CONTINUE 
PHL 	LD 	A,' 	;PRINT 

CALL 	DISP 	;TWO 
CALL 	DISP 	;SPACES 
LD 	A,H 	;PRINT H 
CALL 	HEX 	;AND L 
LD 	A,L 	;IN HEX 

HEX 	PUSH 	AF 
RRCA 
RRCA 
RRCA 
RRCA 
CALL 	HEX2 
POP 	AF 

HEX2 	AND 	15 
ADD 	A,30H 
CP 	3AH 
JR 	C,DISP 
ADD 	A,7 

DISP 	CALL 	VIDEO 
RET 

;FORMATS 
FREADY DEFM 	'READY CASSETTE' 

DEFB 	8DH 
FCERR 	DEFM 	'CASSETTE READ ERROR' 

DEFB 	8DH 
FCHKSM DEFM 	'CHECKSUM ERROR' 

DEFB 	8DH 
FNAME 	DEFM 	'NAME 	START END 	ENTRY' 

DEFB 	8DH 
;DATA AREAS 
ADR1 	DEFS 	2 	;START 
ADR2 	DEFS 	2 	;END 
ADR3 	DEFS 	2 	;ENTRY 

END 	START 

This program contains four utility subroutines and one 
specialized subroutine. 	The utility subroutines are DISP, 
which displays a byte on the video screen (note that it is not 
necessary to save DE and IY, because they are not used); HEX, 
which prints the byte in A in hexadecimal form; 	PHL, which 
prints two spaces followed by the bytes in H and L in 
hexadecimal form; and PRINT, which displays an ASCII message 
until a byte with bit 7 set is found. At the end of the 
program, there are four messages printed by this subroutine 
(FREADY, FCERR, FCHKSM, and FNAME). Each message terminates 
in the byte 8DH, which represents the carriage return with bit 
7 set. 



Cu35uzTE ImpDz AND oUrpDT 	PAGE 126 

The program begins by printing "na&oY CASSETTE" and waiting 
for you to type a key. It then pc1ota a message indicating 
the information it will give you about the tape it reads (name 
and starting, ending, and entry addresses). After getting the 
tope going, it nneoko to see whether the first byte is 558, 
which is the code for file name. If not, the wrong type  of 
tape is being read. The address of the first block must be 
saved for the message later. For this reason, the portion of 
the program that obacko to see if a data block is occurring as 
expected, and reads the length and address of the block, is 
made into a subroutine (Roo). The block is read and ob*nkaom 
computed. 	at the conclusion of the block read, the nbeoKoum 
computed is compared to that on the tape. 	If they are not 
identical, an error has occurred. Any tape error results in 
the program being restarted from the ^oEanY CASSETTE" 
message 

The asterisk blinks only at the end of a block. 	If an 
asterisk is already present in the upper right corner of the 
video display,  it is changed to a blank. 	Otherwise an 
asterisk is stored there. 	After the entry block has been 
read, the tape is stopped and the addresses displayed. 	The 
program is then executed if you typo 8mTua. 

Suppose that you have a tape written in some non-standard 
format that you want to kova how to read. How can you 
discover what is on the tape? The following program can be 
used for this purpose. All it does is read the bytes off the 
tape directly into memory, starting at 70268 (aDr£mn). 	It 
never stops, so you must press the nBSor button when you think 
it is done. After hitting RESET, you can use a program such 
as Monitor 3 or 4 or aUrEuxae to examine the ovuteuto of 
memory and see what is on the tape. This method was in fact 
used to work out the tape formats described above. 

;PROGRAM TO READ A CASSETTE TAPE DIRECTLY INTO MEMORY 
DEFDeV uOU 	3138 
RGYmC EDU 296a 
uoYcE o0U 2358 
B LINK 	oUO 	3C3r1:11 

OnG 	7000a 
START DI 

XOu 	a 
CALL 	nDroaV 
cacL 	nsYmC 
Lo 	oE,BLImu 
Ln 	a,'^' 
xXX 
Ln 	a,' ' 
uKx 

;Urron nISHIT CORNER 

/Snmo AS CMD°r" 
/aTagz zucx 

/sEt Oe BLINKING 



CASSETTE INPUT AND OUTPUT 	PAGE 127 

LD 	HL,BUFFER 	;WHERE TO PUT DATA 
READ 	CALL 	RBYTE 	;GET BYTE 

LD 	(HL),A 	;STORE 
INC 	HL 	 ;NEXT LOC 
LD 	A,B 	 ;GET BLINK CHAR 
LD 	(DE),A 	;BLINK 
CALL 	RBYTE 	;NEXT BYTE 
LD 	(HL),A 	;STORE 
INC 	HL 	 ;NEXT LOC 
EXX 	 ;GET OTHER BLINK CHAR 
LD 	A,B 
EXX 
LD 	(DE),A 	;BLINK 
JR 	READ 	 ;CONTINUE 

BUFFER DEFS 	1 	 ;TO END OF MEMORY 
END 	START 

You may wonder why it was not possible simply to read the 
tape directly to the video display itself, rather than having 
to save it in memory. 	The reason is that the computation 
involved in converting the data to hexadecimal form is too 
lengthy for the computer to keep up with the 500-baud tape 
speed. The computation involved in blinking the asterisk in 
this example, which consists of loading an asterisk into B and 
a blank into B', and then alternately storing B or B' in the 
upper right corner, is an example of the kind of computation 
that can be carried out when reading data from cassettes. 

Recently, some companies have been selling programs that 
come with a special tape-loading program that uses a 
non-standard format, to prevent you from listing or saving the 
program. This prevents people from making pirated copies of 
the software. The program above, coupled with a disassembler, 
can be used to discover the method actually used to load the 
programs, and ultimately to read them yourself. While reading 
such tapes is certainly possible, understanding how these 
loaders work is a much more complicated task, beyond the scope 
of this discussion. 

This information is a testimony that there is no mystery of 
the TRS-80 is beyond the power of a person who understands 
assembly-language programming. Nevertheless, we do not 
encourage people to discover how to make pirate copies of 
software, which is a serious problem in the microcomputer 
industry today. 



S 
USR SUBROUTINES Li 

BASIC PROGRAMS 

15.1 USR Subroutines 

One of the most practical applications of assembly-language 
programming is to carry out some of the operations of a Basic 
program. 	The USR statement is the means by which assembly- 
language subroutines can be called from Basic. 	The USR 
subroutine must be located at the top of your RAM in order for 
it to be protected, and you must set the memory size to the 
first location used by the subroutine. Calling a USR 
subroutine requires a different procedure in Level II and Disk 
Basic. 

The procedure for calling a USR subroutine in Level II 
Basic is so confusing that there was an error in the first 
edition of the REFERENCE MANUAL in the illustration. 	It is 
actually very simple. 	All you have to do is to put the 
address of the location you want to call into locations 408EH 
and 408FH as a two-byte integer. The complicated aspect of 
this is that the numbers must be POKEd into these locations, 
one byte at a time, in decimal form. The decimal equivalent 
of 408EH is 16526 and that of 408FH is 16527. To know what to 
POKE into these locations, you need to convert each byte of 
the entry address of the subroutine into decimal form, and 
then put the least-significant byte into 16526 and the most-
significant byte into 16527. Suppose that the entry address 
is 7D00H. The first byte is 7D and the second 00. 7DH is 125 
and 00 is 0. 	You must therefore POKE 0 into 16526 and 125 

128 



USR SUBROUTINES IN BASIC 	PAGE 129 

into 16527. Then the execution of a "X=USR(N)" statement will 
cause a CALL to location 7D00H to be executed. 

This procedure is much simpler in Disk Basic, because there 
are ten USR functions and the entry location is set by the 
DEFUSR statement. 	In addition, hexadecimal constants are 
allowed. Instead of all that conversion from hexadecimal to 
decimal and POKEing into 16526 and 16527, all you have to do 
is to say DEFUSR0=&H7D00. If you are using Disk Basic, you 
probably have 32 or 48K RAM available, and you will therefore 
probably locate the subroutines up in high memory, such as 
HFD00, for 48K. 

One integer (2-byte) argument, specified in the parentheses 
following the USR or USRn, may be passed to the USR subroutine 
in the calling statement. Additional arguments may be POKEd 
into RAM locations inside the USR subroutine, or anywhere 
within the protected memory area. 

If you want the USR subroutine to operate upon variables 
used by the Basic program, you need to tell it where those 
variables are located. 	This is the purpose of the VARPTR 
statement. VARPTR(X) returns the address of the first byte of 
the variable X. 	Integer variables require 2 bytes, single- 
precision variables 4, double-precision 8, and strings 3 plus 
the length of the string (0 to 255 bytes). PEEK(VARPTR(X)) 
gets the actual value itself, but an assembly-language 
subroutine will usually want the address rather than the 
data. 

The only problem with passing a VARPTR argument to a USR 
subroutine comes when you need to pass more than one of them, 
so that you must use the "POKE" method mentioned above. In 
this situation, you have to break down the VARPTR address into 
two bytes and POKE them into the respective locations. Here, 
you can use an extra integer variable to simplify the process. 
In the following example, suppose that you want to pass the 
address of the variable X to a USR subroutine by POKEing it 
into locations 7FFEH and 7FFFH (32766 and 32767). You can use 
an extra variable Y for this purpose: 

110 DEFINT Y 
120 Y=VARPTR(X) 
130 POKE 32766,PEEK(VARPTR(Y)) 
140 POKE 32767,PEEK(VARPTR(Y)+l) 

PEEK(VARPTR(Y)) contains the first (least-significant) byte of 
the address of X, and PEEK(VARPTR(Y)+1) the second (most-
significant) byte. y must be defined as an integer, but X may 
be any type of variable. Y can now be re-used in the program, 
since it is only needed temporarily. 



USR SUBROUTINES IN BASIC 	PAGE 130 

If the variable whose address you want to pass to the 
assembly-language program is subscripted, you need only pass 
the address of the first location used (usually subscript 0 or 
1). 	You can then rely on the fact that if A(0) is stored in 
one series of bytes, A(1) will be in the next, A(2) will 
follow A(1), etc. The amount that you have to increment the 
address depends on the type of variable. 	For integers, 
single-, and double-precision numbers, this amount is 2, 4, 
and 8 bytes, respectively. The data itself is stored in these 
contiguous locations. 	For strings, the amount is 3 bytes. 
The information stored there is the length of the string in 
the first byte and its address in the following two bytes. 
The data itself is stored elsewhere, in the string space area 
(reserved by the CLEAR statement). 

A single argument may also be passed back to the Basic 
program. 	This is stored in the variable on the left side of 
the equals sign that has USR on the right. 	X=USR(0) passes 
the argument 0 to the subroutine, and when it returns, the 
value passed from the subroutine back to the Basic program is 
stored in X. 	The HL register pair is used to hold the 
argument in both cases. 

If you want to pick up the argument when entering the 
assembly-language subroutine, you must first CALL 0A7FH. 	To 
pass the argument back to the Basic program, you must 
terminate the program with a jump (JP) to location 0A9AH 
(2714). 	If you don't want to return an argument, you simply 
RET (return) at the end of your subroutine. 

15.2 Sorting a Series of Integers 

Sorting an array of numbers is one operation that is ideally 
suited to an assembly-language subroutine. 	The following 
Basic program generates a series of 100 random integers 
(stored in A(0) to A(99)), and then sorts them by means of a 
"bubble" sort. (The bubble sort works by taking each value 
and comparing it to all remaining values to see if it is 
lower. If not, the values are exchanged and the process 
continues. 	In this way:  the smallest values "float" to the 
top and larger ones to the bottom.) 	This program requires 
about a minute and a half of execution time in Basic (try 
it!). The numbers are printed first in unsorted order, and 
later in sorted order. 

10 REM SORT 100 RANDOM INTEGERS 
20 DEFINT A-Z: N=99: DIMA(N) 
30 FOR I=0 TO N: A(I)=RND(1000): NEXT I 
40 FOR 1=0 TO N: PRINT I;A(I),: NEXT I 
50 FOR I=0 TO N-1 



USR SUBROUTINES IN BASIC 	PAGE 131 

60 FOR J=I+1 TO N 
70 IF A(I)<=A(J) THEN 90 
80 X=A(I): A(I)=A(J): A(J)=X 
90 NEXT J,I 
100 FOR 1=0 TO N: PRINT I;A(I),: NEXT 

For this sort to be programmed in assembly language, we 
need the address of the A array and the value of N. It is an 
important aspect of the above program that N is a variable. N 
is set to 99 rather than 100 to make use of the A(0) variable. 
N can be changed to sort any number of random integers. 	We 
will poke the address of A into locations 7FFEH and 7FFFH 
(32766 and 32767), and pass N to the subroutine as the 
argument. 	The following Basic program sets up the sort and 
calls the subroutine, located at 7F00H. We must therefore set 
the memory size to 32515. 	This is a Level II subroutine. 
Disk Basic statements are indicated in remarks: 

10 REM MACHINE LANGUAGE SORT 
20 DEFINT A-Z: N=99: DIMA(N) 
30 FOR 1=0 TO N: A(1)=RND(1000): NEXT I 
40 FOR 1=0 TO N: PRINT I;A(I),: NEXT I 
50 X=VARPTR(A(0)): POKE 32766,PEEK(VARPTR(X)) 
60 POKE 32767,PEEK(VARPTS(X)+1) 
70 POKE 16526,0: POKE 16527,127 
75 REM IN DISK BASIC, REPLACE 70 WITH DEFUSR0=&H7F00 
80 X=USR(N): REM CALL SUBROUTINE 
85 REM IN DISK BASIC, REPLACE 80 WITH X=USRO(N) 
90 FOR I=0 TO N: PRINT I;A(I),: NEXT I 

The subroutine that this program calls is shown below. 
This routine does exactly what the Basic program does and 
executes in less than one second. It will sort 1000 integers 
in about one minute. 

ORG 	7FOOH 
ENTRY 	CALL 	0A7FH 	;put arg into HL 

PUSH 	HL 	;HL=N 
POP 	BC 	;transfer to BC 
LD 	IX,(ADRA) 	;IX=address of A(I) 

ILOOP 	PUSH 	BC 	;save outer loop index 
PUSH 	IX 
POP 	IY 	;IY=address of A(J) 

JLOOP INC IY 	;A(I+1) 
INC 	IY 
LD 	H,(IX+1) 	;HL=A(I) 
LD 	L,(IX) 
LD 	D,(IY+1) 	;DE=A(J) 
LD 	E,(IY) 
OR 	A 	;clear carry 
SBC 	HL,DE 	;A(I)-A(J) 



USR SUBROUTINES IN BASIC 	PAGE 132 

JR 	Z,NEXTJ 	;= 
JR 	C,NEXTJ 	;< 
ADC 	HL,DE 	;restore HL 
LD 	(IY+1),H 	;swap A(I) 
LD 	(IY),L 	;with A(J) 
LD 	(IX+1),D 
LD 	(IX),E 

NEXTJ 	DEC 	BC 	;loop till BC=0 
LD 	A,B 
OR 
JR 	NZ,JLOOP 
POP 	BC 	;outer loop 
INC 	IX 	;next I 
INC 	IX 
DEC 	BC 
LD 	A,B 
OR 
JR 	NZ,ILOOP 
RET 	 ;done! 
ORG 	7FFEH 

ADRA DEFS 2 
END 

This subroutine makes use of the fact that Level II Basic 
integers are standard 16-bit numbers that can be added or 
subtracted using the 16-bit arithmetic operations. 	Sorting 
other types of variables requires more complicated algorithms. 
The BC register pair is used to contain the index values for 
both the outer and inner loops. The value of the outer loop 
is saved in the stack while the inner loop is executed. 

15.3 Alphabetizing a Series of Strings 

Alphabetizing a series of strings is basically the same kind 
of problem as sorting a series of integers, except that the 
strings may be of different lengths. 	The following Basic 
program builds 100 random strings of 1 to 5 characters and 
then alphabetizes them. This process requires about two and a 
half minutes to execute in Basic: 

10 REM SORT 100 RANDOM STRINGS 
20 CLEAR 1000: DEFSTR A: DEFINT B-Z 
30 N=99: DIMA(N) 
40 FOR I=0 TO N: A(I)="" : REM INITIALIZE STRINGS 
50 J=RND(5): FOR K=1 TO J: BUILD STRINGS OF 1-5 CHARS 
60 A(I)=A(I)+CHRS(RND(26)+64)): NEXT K,1 
70 FOR I=0 TO N: PRINT I;A(I),: NEXT I 
80 FOR I=0 TO N-1: FOR J=I+1 TO N 
90 IF A(I) <= A(J) THEN 110 
100 X$=A(1): A(I)=A(J): A(J)=X$ 



USR SUBROUTINES IN BASIC 	PAGE 133 

110 NEXT J,I 
120 FOR 1=0 TO N: PRINT I; A(I),: NEXT I 

To carry out the sorting function in assembly language, we 
have to remember that, for string values, VARPTR(A$) returns 
an address pointing to the LENGTH of the string, and the 
ADDRESS of the string is in the next two bytes. The program 
above can be revised as follows, to set up the call to a USR 
subroutine to do the alphabetizing: 

10 REM ALPHABETIZE STRINGS IN ASSEMBLY LANGUAGE 
20 CLEAR 1000: DEFSTR A: DEFINT B-Z 
30 N=99: DIM A(N) 
40 FOR I=0 TO N: A(I)="": REM INITIALIZE STRINGS 
50 J=RND(5): FOR K=1TO J: BUILD STRINGS OF 1-5 CHARS 
60 A(1)=A(I)+CHR$(RND(26)+64): NEXT K,J 
70 FOR I=0 TO N: PRINT I; A(I),: NEXT I 
80 X=VARPTR(A(0)): POKE 32766,PEEK(VARPTR(X)) 
90 POKE 32767, PEEK(VARPTR(X)+1) 
100 POKE 16526,0: POKE 16527,127 
105 REM IN DISK BASIC REPLACE BY DEFUSR0=&H7F00 
110 X=USR(N): REM IN DISK BASIC REPLACE BY X=USRO(N) 
120 FOR I=0 TO N: PRINT I;A(I),: NEXT I 

The assembly-language subroutine is as follows: 

ORG 	7F00H 
ENTRY 	CALL 	0A7FH 	;put n into HL 

PUSH 	HL 	;move N to BC 
POP 	BC 
LD 	IX,(ADRA) 	;IX=VARPTR(A(I)) 

ILOOP 	PUSH 	BC 	;save I (outer loop) 
PUSH 	IX 
POP 	IY 	;IY=VARPTR(A(J)) 

JLOOP 	PUSH 	BC 	;save J (inner loop) 
INC 	IY 
INC 	IY 
INC 	IY 
LD 	B,(IX) 	;B=length of A(I) 
LD 	C,(IY) 	;C=length of A(J) 
LD 	L,(IX+l) 	;HL=address 
LD 	H,(IX+2) 	;of A(I) 
LD 	E,(IY+1) 	;DE=address 
LD 	D,(IY+2) 	;of A(J) 

COMP 	LD 	A,(DE) 	;A=char in A(J) 
CP 	(HL) 	;compare to A(I) 
JR 	C,SWAP 	;swap if < 
JR 	NZ,NEXTJ 	;if NZ, continue 
INC 	DE 	;try next char 
DEC 	C 	;length of A(J) 
JR 	Z,SWAP 	;if Z, no more chars 



USR SUBROUTINES IN BASIC 	PAGE 134 

INC 	HL 	;A(I) 
DJNZ 	COMP 
JR 	NEXTJ 	;if Z, order OK 

SWAP 	LD 	B,(IX) 	;swap strings 
LD 	L,(IX+1) 	;by changing 
LD 	H,(IX+2) 	;pointers 
LD 	C,(IY) 
LD 	E,(IY+1) 
LD 	D,(IY+2) 
LD 	(IX),C 
LD 	(IX+1),E 
LD 	(IX+2),D 
LD 	(IY),B 
LD 	(IY+1),L 
LD 	(IY+2),H 

NEXTJ 	POP 	BC 	;loop till 
DEC 	BC 	;BC=0 
LD 	A,B 
OR 
JR 	NZ,JLOOP 

NEXTI 	POP 	BC 	;outer loop 
INC 	IX 	;next I 
INC 	IX 
INC 	IX 
DEC 	BC 
LD 	A,B 
OR 
JR 	NZ,ILOOP 
RET 	 ;done! 

ADRA 	EQU 	7FFEH 
END 

This subroutine alphabetizes 100 strings in about one 
second, and 500 strings in about 25 seconds. Running the 
program with the assembly-language subroutine shows that it 
takes Basic much longer to build the random strings than it 
does to alphabetize them. This is an excellent example of the 
efficiency that can be achieved by using assembly-language 
subroutines to do the tasks that they are ideally suited for. 



16 
DISK INPUTAND OUTPUT 

This chapter is intended to provide basic information about 
the operation of the TRS-80's floppy disks. 	It covers the 
fundamentals and input-output operations, while chapter 17 
presents details about the Disk Operating System and disk 
files. Much information about the disks is contained in Radio 
Shack's TRSDOS & DISK BASIC REFERENCE MANUAL. 	In addition, 
there are other books devoted exclusively to the disk, such as 
Harvard C. Pennington's TRS-80 DISK & OTHER MYSTERIES and 
William Barden's MICRO APPLICATIONS TRS-80 DISK INTERFACING 
GUIDE. 

16.1 Disk Basics 

The title of this section is "Disk Basics", not "Disk Basic". 
Basic is the main programming language of the TRS-80, and when 
you add a disk to the computer you have a large number of 
additional features available. 	Here we are covering 
preliminary information for the operation of the disk, and• our 
discussion has nothing to do with the Basic language. In a 
sense, the TRS-80 is not a complete computer without a disk. 
Software to read the disk is contained in the ROM, and it is 
only when the configuration is tested and found not to contain 
a disk that Level II Basic is entered. 

Everyone who owns a disk is familiar with the terms 
"tracks", "granules", and "sectors", but if you aren't 

135 



DISK INPUT AND OUTPUT 	PAGE 136 

familiar, then this information is new to you. The disk DRIVE 
is the piece of hardware into which a DISKETTE is inserted. 
The fact that the diskette can be removed is a vital aspect of 
its operation. 	The diskette is a round magnetic device 
similar to a phonograph record, except that information is 
recorded on it magnetically, and it is flexible or pliable and 
bends easily. It spins at approximately 300 RPM inside the 
paper wrapper in which it is kept. The magnetic impulses are 
read or written by a HEAD, which makes contact with the 
diskette through the oval-rectangular hole at the interior of 
the diskette. The diskette should always be handled carefully 
and replaced in its paper sleeve when not being used. 

The surface of the diskette is divided into 35 concentric 
circles called TRACKS. (The fact that the inner tracks have a 
smaller surface area is of no concern to the operation of the 
system.) Each track is in turn divided into ten SECTORS. 256 
bytes of data can be stored on each sector, and thus 2560 
bytes on each track. The entire capacity of the diskette is 
35 x 2560 = 89,600 bytes. 

Other floppy disk systems may employ a different 
organization of the diskette, although the method used by 
Radio Shack is quite common. There are presently two kinds of 
floppy disk drives: eight-inch or standard disks and five-
and-one-fourth inch or mini disks. The TRS-80 uses the mini 
disks, although the TRS-80 model II uses standard disks. 	The 
capacity of an 8-inch disk (over 500,000 bytes) is 
significantly greater than that of a mini disk. 

Other disk systems may use 40 or 77 tracks on the diskette, 
and sometimes each track is divided into 16 sectors rather 
than ten. 	The TRS-80 uses SOFT-SECTORED diskettes, which 
means that there is only one little hole that must be sensed 
to find the beginning of the first sector on the diskette. 
The other sectors are found by sensing magnetic impulses that 
are written on the diskette when it is formatted. Formatting 
is something that you must do (by running a special program) 
to a new diskette before you use it the first time. 
Hard-sectored diskettes have either ten or 16 different holes 
that must be sensed by the disk controller. 

16.2 The Disk Operating System 

When you power up or "boot' a TRS-80 containing a disk, the 
computer expects that the diskette in the first drive, 
referred to as the "system" diskette in drive "zero", contains 
special information in the first sector of the first track. 
This track is part of a file called "BOOT/SYS", which contains 
a program that in turn reads much more information from the 



DISK INPUT AND OUTPUT 	PAGE 137 

disk into memory. 	Only the first sector of this file is 
actually used for the bootstrap loader. Sectors 2-3 of the 
file contain an encoded copyright notice, which is displayed 
if you type "BOOT/SYS.WHO" and hold down the "2" and "6" keys 
simultaneously. Sectors 4-5 contain tables. 

The program read into memory at power-on or reset is called 
the DISK OPERATING SYSTEM (DOS), and it is used for all disk 
input-output and some other functions. Radio Shack provides a 
DOS called TRSDOS, of which there have so far been four 
versions numbered 2.0 through 2.3. 	Several others are 
available from other companies. The most important of these 
are NEWDOS and NEWDOS80 available from Apparat, Inc.; and VTOS 
3.0, available from Virtual Technology, Inc. 

The DOS is organized into a series of "system" files 
referred to as SYSO to SYS6, and some DOSs have file names up 
to SYSl3. The reason for this organization is that there is 
not enough room in memory to have all functions available at 
all times, so the DOS automatically reads in what it needs 
when it needs it. 	The portion of memory used by the DOS 
extends approximately from locations 4200H through 5200H, and 
it is analogous to the ROM in that this information must not 
be disturbed by the programmer. Inclusion of the DOS on the 
system diskette takes up a significant portion of its 89K 
bytes, leaving only about 55K (46K when including BASIC and 
utilities) for user programs and data. 

The main purpose of the DOS is that it allows you to refer 
to data on the disk as FILES rather than by tracks and 
sectors. A file contains as many sectors as it needs to 
contain, as long as they are all on the same diskette. It may 
be split up among various tracks all over the diskette, but 
you never have to worry about this even though you can refer 
to the individual sectors of the file. 	The DOS allocates 
space to the files in terms of GRANULES, consisting of five 
sectors or half a track each. A minimum of five sectors is 
allocated, even if you need only one. To keep the allocation 
of space straight, the DOS reserves track 17 (purposely in the 
middle of the diskette so that the head never has to move more 
than half its width) as a DIRECTORY track. 	This track 
contains the name of each file and all the information 
relating to its space allocation, and also tables called the 
HASH INDEX TABLE (HIT) and GRANULE ALLOCATION TABLE (GAT). 
These will be explained in Chapter 17. 

While the organization of the disk into files does waste 
some of the space, it makes accessing the data on the disk 
very easy for the programmer. 	The DOS handles all of the 
input-output operations as well as the bookeeping. 



DISK INPUT AND OUTPUT 	PAGE 138 

To understand how to use the disk, you need to know the 
basic operations of the disk, which have nothing to do with 
the file structure, and you also need to know how to use the 
DOS, which is one of the most important aspects of the 
computer. 	Because Disk Basic spends much of its time 
converting data into and out of strings, it is very slow and 
inefficient in its use of disk input-output operations. The 
true power of the disk can only be realized through 
assembly-language programming. 

16.3 The Disk Controller 

The heart of the TRS-80's disk system is the Western Digital 
FD17718-01 floppy disk controller chip, contained in the 
expansion interface. 	The disk drive used by Radio Shack is 
the Shugart SA400. Many drives made by other companies have 
also been used successfully, and are compatible with the 
Shugart SA400. The disk controller chip is interfaced to the 
TRS--80 by being directly connected to memory locations 37E0H 
and 37ECH to 37EFH. This is to say that all disk input-output 
operations are effected by storing or reading various bytes in 
these locations. 

To read or write from the disk, you must first SELECT the 
appropriate disk drive. This turns on the drive motor and 
leaves it running for about three seconds. All subsequent 
disk operations are directed to the drive selected. To select 
a drive, a value specifying the drive must be stored in 
location 37E0H (14304). The values 1, 2, 4, and 8 specify 
drives 0, 1, 2, and 3, respectively. 	The sequence of 
operations: 

LD 	A,1 
LD 	(37E0H),A 

selects drive zero. 	Storing a value representing a 
combination of these values, such as 3, which combines drives 
0 and 1, selects two or more drives simultaneously, although 
no standard software makes use of this feature (and it is 
probably unreliable). 

The basic commands that may be issued to the disk 
controller chip allow you to position the head and read or 
write data. The basic commands are as follows: 

1. Restore: move the head to track zero. 
2. Seek: find the currently specified track. 
3. Step: step the head in the last direction. 
4. Step In: step the head one track in. 
5. Step Out: step the head one track out. 



DISK INPUT AND OUTPUT 	PAGE 139 

6. Read: read one byte of data. 
7. Write: write one byte of data. 
8. Read Address: read ID field. 
9. Read Track: read entire track. 
10. Write Track: write entire track. 
11. Force Interrupt: terminate operation. 

The disk controller contains various registers and status 

	

indicators. 	Location 37ECH (14316) is the COMMAND register. 
Most disk operations are accomplished by loading the proper 
value into this location, once a drive has been selected. 
Another is the STATUS register, which is used to test whether 
a previous operation has been completed and whether the disk 
is ready for another command or for data. The status register 
is read by reading location 37ECH, the same as the command 
register. 37EFH (14319) is the DATA register. Data is read 
from the diskette in serial order, and always passed into or 
out of this location in quantities of one byte. 	The data 
register is also used to hold various other values when 
commands are issued. 	Other registers include the TRACK 
register, which is at location 37EDH (14317), and the SECTOR 
register, at location 37EEH (14318). 	They hold information 
about the track and sector currently being used. 

Most disk commands are executed by simply storing a 
particular value into location 37ECH. The following table 
shows the values that must be loaded in order to accomplish 
the functions indicated: 

Value 	Function 	Value 	Function  

	

03H 	restore 	A8H 	write data byte 

	

13H 	seek 	A9H 	write byte on 

	

33H 	step last 	directory track 
direction 	C2H 	read address 

	

53H 	step in 	E4H 	read track 

	

73H 	step out. 	F4H 	write track 

	

88H 	read byte 	DOH 	force interrupt 

To be sure, other values may be used to perform these same 
functions with minor differences in operation, but these are 
the values normally used for these operations on the TRS-80. 

When data is read or written from a disk, the cpu must 
continually be ready to respond to the disk controller. All 
other operations must be locked out. 	Interrupts must be 
disabled, and the cpu must be in a loop, testing the status of 
the controller. Since disk operations are usually very fast, 
this is a minimum amount of overhead, but it does mean that 
the TRS-80 cannot be used in certain real-time applications 
where it must be ready to respond to external conditions. 



DISK INPUT AND OUTPUT 	PAGE 140 

One other point about the disk system is that the presence 
of the write protect tab does nothing but set a bit in the 
status register. The protection of data on write-protected 
diskettes is entirely a function of the software. 

16.4 Disk Operations 

After selecting the drive, the first operation we might want 
to perform might be a restore, which moves the head to track 
zero. This is accomplished by storing the value 3 in location 
37ECH (14316). We must then test the value in 37EC to 
determine whether the disk has completed its operation. When 
bit zero of this location goes to zero, the operation is 
finished and the head is positioned over track zero. As long 
as it remains a one, we must wait before performing any 
further disk operation. 

One way of locating any track on the disk is to move the 
head to track zero, and then step in until the desired track 
is found. The step-in operation is done by storing the value 
53H (83) 	in location 37ECH. 	Conversely, stepping out is 
performed by storing the value 73H (115) in 37EC, and stepping 
from the last direction by storing 33H (51) in the same 
location. After performing a step operation, we again must 
test the status of the disk and wait until the operation is 
complete. 	To verify what track the head is currently 
positioned over, we can read the track register by simply 
loading the contents of location 37EDH (14317). 

A better way of finding a particular track is to use the 
seek command, which automatically positions the head to a 
specified track. To use this command, the track number (0 to 
34) must first be loaded into location 37EFH (14319), after 
the drive has been selected. The sector can also be specified 
by storing the sector number in 37EEH (14318). Seek is then 
executed by storing 1BH (27) into location 37ECH. 

All of the above head-positioning operations may be 
accomplished in Basic, by simply POKEing and PEEKing into the 
prop.r lnrai-innq 	Thra fnllnwing Racir,  prngram 

zero, restores it to track zero, and then asks you to specify 
a track number. The head is then positioned over this track 
by means of the seek command, and the track number is read 
from the track register and printed, to verify that the proper 
track has been located. Then the program returns and asks you 
for a new track. The subroutine at statement 150 tests the 
status of the last operation and waits until it has been 
completed. 



DISK INPUT AND OUTPUT 	PAGE 141 

10 POKE 14304,1 
20 POKE 14316,3 
30 GOSUB 150 
40 INPUT" TRACK #";T 
50 POKE 14304,1 
60 POKE 14319,T 
70 GOSUB 150 
80 POKE 14316,19 
90 GOSUB 150 
100 A=PEEK(14317) 
110 PRINT A 
120 A=PEEK(14316) 
130 PRINT A 
140 GOTO 40 
150 A=PEEK(14316) 
160 IF (A AND 1) <> 0 THEN 
170 RETURN  

select drive zero 
restore to track zero 
wait until done 
get track # 
select again 
output track 
wait 
seek 
wait 
read track register 
print it 
get status 
print status 
try another track 
test status 

150 	loop if busy 
done 

One impression you may have when running this program is 
that the disk finds the proper track almost immediately, and 
if you do not input a new track number within three seconds, 
the drive motor is turned off. It is true that the head can 
be positioned over any track in no more than a couple of 
seconds, but this speed is nothing when compared to the rate 
at which data is read or written from the disk. The latter is 
so fast that it cannot be done in Basic at all. 

Reading and writing of data on the disk is normally done 
with only the read and write byte commands, on a single sector 
at a time. The read track, write track, and read address 
commands are usually used only in formatting the disk, but it 
is possible to read and write entire tracks of data. The read 
and write byte commands can also read and write multiple 
sectors (from 2 to 9), although this feature is almost never 
used. 	Finally, note that the directory track must be written 
with a different code, although it can be read as any track. 
This property is used to protect the status of the directory 
track, without which the DOS cannot function, as well as to 
distinguish the directory from the other tracks. 

Reading or writing data can only be done after a sequence 
of operations such as shown above has been executed. Once the 
disk has been selected and head positioned, the status must be 
continuously tested. 	When it indicates that a byte is ready 
to be read from the data register, the byte must be taken and 
stored in the buffer immediately, and the process repeated 
until the entire sector or track has been read. 

To illustrate how this works, let us examine the portion of 
the ROM that reads the "BOOT" file from the system drive into 
memory. 	BOOT itself is a "bootstrap loader", which loads in 



oIon Iweoc AND ODrr0z 	PAGE 142 

the rest of the DOS once it is entered. This program starts 
at location 06968 in the xom. What follows is a disassembled 
listing of the ROM to which comments have been appended: 

0696 	Ln 
0699 	INC 
069u 	Ce 
069C 	Jr 
069F 	or 
0 6A 	Lo 
06A4 	Lo 
06x7 	Ln 
00Ax 	Lo 
0 6A 	Lo 
06AF 	oaLc 
06132 	BIT 
06e4 	Ja 
06B6 	Xon 
06e7 	Lo 
06Bu 	Lo 
06ao 	co 
06eF 	Cn 
06c0 	azz 
06C2 	Jm 
06C4 	LD 
06C5 	Lo 
05C6 	INC 
06C7 	Jn 
06C9 	JP  

u,(37Ena) 
A 
2 
C,0075a 
u,l 
(37El8),a 
8L,37ECu 
nC,]7Ora 
(aL),3 
ac,0 
G0a 
0,(8L) 
ma,06a2e 
A 
(37s8a),A 
aC,420Na 
a,8CH 
(ac) ,a 
1, (HL) 
z,06C0o 
A, (DE) 
(oo),a 
C 
mo,06C0o 
4200o 

/teat 
;disk 
;atatue 
;go to Level II if no disk 
;drive zero 
;select it 
;command and status address 
;data address 
;restore command 
;delay 64K times 
/aOm delay routine 
;test status 
/wait if buoy 
;zero & 
;select sector 0 
;where to gut data 
;read command 
;read sector zero 
;test status 
/wait until ready 
/read byte 
;store in 42008 ff 
;increment pointer 
;continue until 256 bytes read 
/jump to DOS bootstrap loader 

This listing illustrates many aspects of how disk input and 
output programming works. The double registers BC, o8, and HL 
are always loaded with addresses that are used in fetching and 

are faster 
be changed 
C" is used 
codes and 

1.0.5 Disk Input/Output Subroutines 

We now have enough information to write generalized disk read 
and write subcoutioes. at this point it is necessary to 
mention that all rn800S routines have curious time-wasting 
instructions such as: 

puSa ar 
POP 	AF 

after various disk operations are performed. Presumably these 

storing data, because instructions like ^ro a,(8L)^ 
to execute than "Lo u,(37BFo)", and the address can 
by an INC instruction. 	In this example, "INC 
rather than "INC oo^ because it sets the condition 
only 256 bytes are being read. 



DISK INPUT AND OUTPUT 	PAGE 143 

are included either because of undocumented problems with the 
disk controller chip, or as a precaution. 

The following subroutine reads a single sector from the 
diskette in drive zero. The track and sector is specified in 
the DE register pair, D indicating the track and E the sector, 
and the buffer where incoming data is to be stored is in BC. 
The "AND 5CH" tests for various errors that may occur during 
the operation, and terminates it by a force interrupt 
instruction if an error occurs. 

;disable interrupts 
;drive zero 
;select 
;save BC 
;wait 64K times 
;ROM delay subroutine 
;restore BC 
;command register address 
;select again 

;specify track & sector 
;seek 
;waste time 

;waste mole time 

;get status 
;busy bit to carry 
;wait until done 
;read byte command 
;data register 
;start reading 
;busy bit to carry 
;if not busy 
;get status 
;test 
;wait if busy 
;get byte 
;store in buffer 
;increment pointer 
;continue 
;get status 
;teSt errors 
;done if no errors 
;force interrupt 
;print error message 
;done 

RDSECT DI 
LD 
	

A,1 
LD 
	

(37E0H) ,A 
PUSH 
	

BC 
LD 
	

BC,0 
CALL 
	

60H 
POP 
	

BC 
LD 
	

HL,37ECH 
LD 
	

A,1 
LD 
	

(37E0H) ,A 
LD 
	

(37EEH),DE 
LD 
	

(HL),13H 
PUSH 
	

BC 
POP 
	

BC 
PUSH 
	

BC 
POP 
	

BC 
WAIT 
	

LD 
	

A, (HL) 
RRCA 
JR 
	

C, WAIT 
DSKCM 
	

LD 
	

(HL) ,88H 
LD 
	

DE,37EFH 
JR 
	

RDLOOP 
BUSY 
	

RRCA 
JR 
	

NC,TSTERR 
RDLOOP LD 
	

A, (HL) 
BIT 
	

1,A 
JR 
	

Z,BUSY 
DSKIO LD A,(DE) 

LD 
	

(BC) ,A 
INC 
	

BC 
JR 
	

RDLOOP 
TSTERR LD 
	

A, (HL) 
AND 
	

5CH 
RET 
LD 
	

(HL) ,ODOH 
CALL 
	

ERRMSG 
RET 

Disk write subroutines are handled in much the same way, 
except that the data register must first be loaded with a byte 



DISK INPUT AND OUTPUT 	PAGE 144 

and the status then checked to determine if the controller is 
ready for the next byte. In fact, exactly the same subroutine 
as above could be used if the instruction at DSKCM is changed 
to: 

LD 	(HL),0A8H 	;write byte 

and the two instructions at DSKIO are changed to: 

LD 	A,(BC) 
	

;get byte 
LD 	(DE) ,A 	;store in data register 

It must be understood that this discussion is an 
oversimplification of the entire process, although it does 
serve to provide information that will be satisfactory for 
most purposes. 

16.6 TRSDOS Input-Output Subroutines 

There is little reason to include much information about the 
TRSDOS input-output subroutines, because this information is 
covered well and in detail in Radio Shack's "TRSDOS & DISK 
BASIC REFERENCE MANUAL. 	All known DOSS use the same 
subroutine calls. 

File handling is controlled through a data control block or 
DCB. Before the file is opened, the DCB contains the complete 
name of the file (including the extension, password, and drive 
number). 	When the DCB is open, other information is stored 
there. When open, the most important items in the DCB are the 
EOF (offset of last delimited in last record), LRL (logical 
record length), NRN (next record number to read or write) and 
ERN (ending record number). These are located at DCB bytes 8, 
9, 10-11, and 12-13, respectively. 

One of the basic ideas behind these subroutines is that, by 
setting the logical record length when opening the file and 
POSN to position it, records of any length (up to 256 bytes) 
may be read or written. The DOS takes care of any problems 
arising from the fact that these records may span two sectors 
in the file. Recent DOSs such as VTOS 3.0 and NEWDOS60 
incorporate this feature in Basic programming. With other 
DOSs, it can only be accessed through assembly-language 
programming. 	In most cases, an entire sector is read or 
written at one time. LRL is set to zero for this purpose. 

All TRSDOS subroutines require that the address of the DCB 
be loaded into the DE register pair before the system call is 
made, and the zero flag is set on exit to indicate whether the 
operation was successful. If there was an error (i.e., if NZ 



DISK INPUT AND OUTPUT 	PAGE 145 

was set), A contains the error code. Other calling parameters 
are noted for the individual subroutines, which are as 
follows: 

Name 	Address 
INIT 	4420H 

OPEN 	4424H 
POSN 	4442H 

READ 	4436H 
WRITE 	4439H 
VERF 	443CH 

CLOSE 	4428H 
KILL 	442CH  

Function 
Create file if 
none exists. 
Open existing file. 
Position file, 
if LRL <>0 
Read record. 
Write record 
Write record with 
verify. 
Close file. 
Kill file. 

Calling Parameters 
HL => buffer 
B = LRL 
Same as for INIT 
BC = logical record 
number 
HL => UREC if LRL<>0 
Same as for READ 
Same as for READ 

While the information in the manual is mostly complete, the 
following errors and incompatibilities should be noted: 

ERN contains the last record number when a file is opened. 
Following a write operation, it contains the number of the 
record just written. When writing a record into the middle of 
a file, ERN must be fixed before the file is closed. 

The error message subroutine at 4409d sometimes prints 
messages of an incorrect length, producing a message that 
scrolls off the video display before you can read it. 	It is 
best simply to print the error number, or to include error-
recovery procedures in user programs. 

There is a major incompatibility between all versions of 
TRSDOS and NEWDOS and NEWDOS80 concerning the way in which the 
EOF, ERN and NRN parameters in the DCB are maintained. When 
operating under NEWDOS or NEWDOS80, ERN contains the ending 
record number only when the EOF is on a sector boundary. 
These details are described in Apparat's "ZAP" documentation, 
which gives a list of corrections for NEWDOS version 2.1., and 
in the NEWDOS80 documentation. 



DISK FILES 

17.1 The Disk Directory 

The disk directory, normally placed on track 17 unless that 
track is locked out, is the key to understanding the entire 
file structure on the diskette. 	Unfortunately, Radio Shack 
has never released many details about these technical matters, 
but much useful information is contained in the documentation 
for Apparat's NEWDOS and NEWDOS80, and in H.C. Pennington's 
TRS-80 DISK & OTHER MYSTERIES. 

The first two sectors of the directory track contain the 
Granule Allocation Table (GAT) and Hash Index Table (HIT). 
The remaining eight tracks contain directory entries, either 
primary entries ("FPDE" for "File PriMary Directory Entry") or 
extension entries ("FXDE" for "File Extension Directory 
Entry"). Each entry is 32 bytes long. 	There is thus a 
maximum of eight entries per sector and 64 entries (which may 
mean less than 64 files) on the diskette. (Why the DOS allows 
a maximum of 50 files on a formatted diskette and 60 on a 
system diskette is unknown.) 	All of this data is quite 
straightforward to interpret if you know how. 

146 



DISK FILES 	PAGE 147 

17.2 The GAT Sector 

The GAT sector contains two tables indicating the space 
available for files on the disk and whether any tracks are 
locked out. 	In addition, it contains the hash code for the 
diskette's password, the diskette name and date, and the AUTO 
command file that is to be called on power on or reset. All 
passwords are encoded in a "hash code" explained below (see 
section 17.6). 

The first 96 bytes of the GAT sector (bytes 00 to 5FH) 
contain the Granule Allocation Table itself. Since the Radio 
Shack disk drives use only 35 tracks, only the first 35 bytes 
(00 to 22H) are actually used, although the DOS contains 
provision for expansion up to 96 tracks on the disk. 	Each 
byte simply indicates whether one or both granules on the 
track is free or already allocated to a file, according to the 
following table: 

binary 	hexadecimal 	meaning  
11111100 	FC 	both granules 

(sectors 0-9) free 
11111101 	FD 	only first granule 

(sectors 0-4) allocated 
11111110 	FE 	only second granule 

(sectors 5-9) allocated 
11111111 	FF 	both granules 

(sectors 0-9) allocated  

The next 96 bytes contain the Track Lock Out Table. This 
table is exactly the same as the GAT, only its function is to 
tell the DOS whether a track can be used at all. The purpose 
of these tables is to make it simple for the DOS to know how 
much space it has available and where the space is. 

Why would a track be locked out? 	There are several 
reasons. 	It can be locked out because the track could not be 
verified during a FORMAT or BACKUP operation. 	You may also 
want to use special software, such as that described in 
Chapter 16, to write certain tracks and therefore not make 
them available for the DOS. 

The final 64 bytes of the GAT sector contain a variety of 
miscellaneous information. The password hash code is in bytes 
CE-CFH. The diskette name and date are in bytes DO to DF; 
each of these requires exactly eight bytes. Finally, the AUTO 
command file is in EO-FF, indicated simply as a command 
followed by a carriage return. The absence of a command is 
indicated by placing a carriage return in byte EO. 	The 
remaining bytes are filled with FF. A map of the entire GAT 
sector is shown below. 



DISK FILES 	PAGE 148 

"GAT" Sector Map (Track 17, sector 0) 

0123 
00 < 
10 
20 
30 
40 
50 
60 < 
70 
80 
90 
AO 
BO 
CO < 
DO < 
E0 <-- 
FO 

4 5 678 9 A BCDEF 
GRANULE ALLOCATION TABLE 	 

(unused) 
(unused) 
(unused) 

TRACK LOCK OUT TABLE 	 

(unused) 
(unused) 
(unused) 

(UNKNOWN) 	><PSW> 
DISKETTE NAME AND DATE 	 
"AUTO" COMMAND FILE 	 

17.3 The "HIT" Sector 

The HIT sector (sector 1 of the directory track) contains 
information concerning each file name in the directory. 	Only 
the first eight bytes of each 32-byte segment of the sector 
are used. Each file name in the directory has a single byte 
of hash code in the table. The POSITION of the byte in the 
table relates to its address in the direktory. 	The last 
hexadecimal digit (0-7) plus 2 gives the sector number in the 
directory track where the file entry is stored, and the first 
digit (only even values from 0 to E) times 16 gives the 
relative byte where the entry starts within the sector. 	The 
following map shows the correspondence between the HIT sector 
and the directory entries: 

0 	1 	2 	3 	4 	5 	6 	7 	+ 2 = sector 
00 200 300 400 500 600 700 800 900 	(bytes 8-F unused) 
20 220 320 420 520 620 720 820 920 
40 240 340 440 540 640 740 840 940 
60 260 360 460 560 660 760 860 960 
80 280 380 480 580 680 780 880 980 
AO 2A0 3A0 4A0 5A0 6A0 7A0 8A0 9A0 
CO 2C0 3C0 4C0 5C0 6C0 7C0 8C0 9C0 
E0 2E0 3E0 4E0 5E0 6E0 7E0 8E0 9E0  

*16 = byte 

In this map, a number like "280" means "sector 2, byte 80H" of 
the directory track. Each directory entry is 32 bytes long. 



DISK FILES 	PAGE 149 

If you look at a listing of a HIT sector for a particular 
diskette, you may notice that some of the codes for different 
files are identical. 	This is perfectly normal, and simply 
means that the number produced must correspond to the code 
derived from the name of the file. It does not mean that all 
codes must be unique. The purpose of the HIT sector is to 
tell the DOS where active entries are located within the 
directory, and then to verify that these entries correspond to 
the files specified. 	A zero in the HIT byte means that no 
entry is stored in the directory. 

17.4 File Primary Directory Entries (FPDEs) 

The bulk of the directory track, sectors 2-9, is reserved for 
file entries. Almost all of these are FILE PRIMARY DIRECTORY 
ENTRIES or FPDEs. A FILE EXTENSION DIRECTORY ENTRY or FXDE 
occurs only when a particular file is not only very large, but 
also split among more than four separate extents. 	In the 
remaining discussion we will refer to directory entries by 
their shorthand names, FPDEs or FXDEs. 

Each FPDE or FXDE is 32 bytes long, the same as the TRSDOS 
DCBs. The purpose of the FPDE is to provide information on 
the name of the file, what type of file it is, whether it has 
update or access passwords, and where it is located. The FXDE 
gives additional information on where the file is located. 
Since space is always allocated in terms of granules, this is 
the most complicated aspect of the entries. 

The way space allocation works is as follows: when the DOS 
allocates a granule to the file, it checks to see that this is 
the first free granule following used space. As sectors are 
added to the file, additional granules are allocated following 
the first one, until a sector is encountered that is being 
used by another active file. At this point the DOS issues 
another extent to the file, which begins with another granule 
on a completely different track and sector. The more files 
that are added to a diskette, the more complicated the space 
allocation becomes. 	It is quite common for files to have 
several extents on different tracks, jumping all about the 
diskette. There is room for four extents in the FPDE and four 
more in each additional FXDE. 

The information in the FPDE is quite specific, and can be 
summarized in tabular form: 



DISK FILES 	PAGE 150 

Byte  

	

(hex) 	Meaning  
0 	File Type: Bit 7: 0=FPDE, 1=FXDE 

Bit 6: 1=system file, 0=non-system file 
Bit 5: unused 
Bit 4: 1=file exists in HIT sector, 

0 = file killed 
Bit 3: 	1=invisible file, 0=visible 
Bits 0-2: protection level, according to 

the following code: 
(111 binary=) 7 = no access 

6 = execution access only 
5 = read and execute only 
4 = write, read, execute 
3 = (unused) 
2 = rename, write, read, execute 
1 = kill, rename, write, read, 

execute 
0 = no restrictions 

	

1-2 	Unused by FPDE. 
3 	End of File (EOF) byte: last byte used in last 

sector of the file. 
4 	Logical Record Length (LRL): this concept is used 

only by VTOS 3.0 and NEWDOS80. 

	

5-C 	File Name: 8 characters, padded with blanks on the 
right if necessary. 

	

D-F 	Extension: 3 characters, padded with blanks as name. 

	

10-11 	Update Password, stored as 2-byte hash code. 

	

12-13 	Access password, stored as 2-byte hash code. 

	

14-15 	EOF Relative Sector: if the EOF byte (3) contains 
zero, then this byte is the relative sector 
count of the file; but if byte 3 is non-
zero, then it contains the relative count 
plus one. Since a file may contain more 
than 256 sectors, this entry is a two-byte 
word, stored in reverse (LSB/MSB). 

	

16-1F 	Five 2-byte pairs specifying EXTENTS: 
1st byte: if FF (255), signifies end of extents. 

if FE (254), then 2nd byte contains a 
DIRECTORY ENTRY CODE (DEC) pointing 
to an FXDE that contains additional 
extent information. 

if 0-22 (0-34), TRACK NUMBER on diskette 
where this entry starts. 

2nd byte (if 1st byte <254): 
bits 5-7: number of granules from start of 

track to start of eptent (0 or 1). 
bits 0-4: number (-1) of contiguous granules 

assigned to this extent. 



DISK FILES 	PAGE 151 

The first byte of the file extent is easy to read. it is 
simply the track number. The second byte must be broken down 
into bits, but the following simple rules apply: 

1. If this byte is 0-19H, the extent starts at sector 
zero. 

2. If it is 20H or greater, the extent starts at sector 
five. 	In this case, subtracting 200 from the value in this 
byte will give you the granule count. 

Let us clarify the extent bytes with some examples: 

(a) 12 00 The extent begins on 	track 12H 	(la), 	sector 
zero. 	One granule 	is assigned 	to 	the extent. 

(b) 05 21 The extent begins on track 5, 	sector 5. 
Two granules are assigned to this extent. 

(c) 15 23 The extent begins on track 15H 	(21), 	sector 
5. 	Four granules are assigned 	to 	the extent. 

(d) 13 30 The extent begins on track 13H 	(19), 	sector 
5. 	17 granules are assigned to 	this extent. 

17.5 File Extension Directory Entries 	(FXDEs) 

FXDEs contain only information about file extents, and a 
pointer to the FPDE. All remaining data about the file is in 
the FPDE. The bytes used by the FXDE are as follows: 

Byte 	Meaning  
0 	> 80H 	(Bit 7=1 for FXDE) 
1 	DEC to FPDE (see below) 
2-15 	unused, and should contain zeros. 
16-1F 	Extents, same as in FPDE.  

If byte 30 of the FPDE contains the value FE (254), then 
byte 31 contains a DIRECTORY ENTRY CODE (DEC) pointing to the 
FXDE. 	Similarly, byte 1 of the FXDE contains a DEC pointing 
back to the FPDE. If you recall the information about the HIT 
sector, all directory entries are stored in 32-byte blocks in 
sectors 2-9 of the directory track. The DEC byte is decoded 
as follows: 

Bits 0-2 + 2 = the sector containing the FXDE (or FPDE). 
Bits 3-4: unused. 
Bits 5-7 = the number of the entry within the sector. 

(There are 8 32-byte entries in each sector, 
numbered 0-7.) 



DISK FILES 	PAGE 152 

The 
DECs: 

following 

Hex Binary 
(a)  40H = 010 00 

(b)  A6H = 101 00 

(c)  83H = 100 00 

Meaning  
sector 2, entry 2 (the THIRD 
entry, starting from 0). 
This entry is in bytes 40-5FH 
(64-95) of the sector. 

sector 8, entry 5, stored in 
bytes AO-BFH (160-191). 

sector 5, entry 4, stored in 
bytes 80-9FH (128-159). 	 

110 

011 

000 

examples may help clarify how to decode 

17.6 Passwords and Hash Codes 

"Hash code" is a term describing the process for taking a 
character string and converting it into an encoded value. 
Each byte of the string is multiplied by some value. The 
codes are then added together to produce the hash. 	Different 
strings may produce the same values, and there are hundreds of 
different hashing methods. 

All passwords stored in the directory track are stored in 
hash code, so that you cannot simply read the sectors and find 
out what they are. 	If you want to read a file that is 
protected by a password that you don't know, the easiest 
procedure is to modify the diskette directory so that it 
contains a password that you do know. 	The password for a 
string of all blanks, indicating no password, is 96 42. Both 
the SUPERZAP and M0N4 programs contain procedures for 
modifying disk sectors independent of the file structure. 

If you want to find out the hash code for a particular 
password, you need to know the formula used by Radio Shack. 
The password, a string of 8 bytes padded with blanks on the 
right, is operated on according to the polynomial 

X**16 + X**12 + X**5 + 1 

and the numerical result is the two-byte hash code. The 
following program allows you to input a password or exactly 
eight bytes (no backspacing permitted!), and then displays the 
hash code: 

ORG 	7000H 
START 
	

CALL 	01C9H 	;clear screen 
LD 	A,14 	;cursor on 
CALL 	33H 



DISK FILES 	PAGE 153 

NEXT 	LD 	A,'?' 	;print prompt 
CALL 	338 
[o 8L,paS8WD 	;buffer 
[o u,8 	;8 bytes 

zmPur CALL 	498 	;input string 
Lo 	(8L),a 
CALL 	338 	;display 
INC 	HL 
DJN% 	INPUT 
CALL 	Cn 	;print carriage return 
LD 	8L,PASSWD+7 
Lo 	D3,lE0C8 	/initial code 
Lo 	C,D 	/8 characters 
Jo L4 

Ll 	Lo 	a,8 
L2 	eo o 

oa 	8 
Jm mC,L3 
Lu 	A,108 
XUu 	D 
LD 	8,u 
Q} 	u,888 
XOo 	o 
Lo 	D,A 

L3 	DJ0u 	L2 
L4 	LD 	 ,D 

XOB 	(8L) 
Lo 	o,x 
DEC 	8L 
DEC 	C 
J8 mz,[l 
8X 	oO,8L 	;result to 8L 
Lo 	 ,L 	;print in 
CALL 	HEX 	;reverse order 
LD 	a,8 
CALL 	8OV 
CALL 	Ca 	;print carriage catuco 
JR NEXT 	/get another password 

Co 	Lo 	a,l3 
Je ]]a 

HEX 	pUGu 	AF 	;print & i-n hex 
naCa 
ouC& 
aoCa 
uBCu 
CALL 	8EX2 
POP 	AF 

8EX2 	AND 	15 
ADD 	a,308 
Cg 	3A8 
Je C,3]8 



DISK FILES PAGE 154 

&oo u,7 
Jr 33e 

eAGSwn ooFG 8 
nmo GrAar 

This program does not provide a formula for discovering the 
paaaoncd corresponding to a particular uaob code, but lets you 
experiment to find a specific value. This is the method used 
for ToGonG 2.1 and 2.2, but it has been modified for 2.3. The 
following table shows all the x000u hash nodes and passwords 
used by zgSnOG 2.1, 2.2 and 2.3, muwo0s 2.1, and vzOs 3.0: 

8aab Code password(s) Used by  
1Fo2 'm3oz 

- 
Access for oV0T/SyS, all DOSS 

210E 'aJzJ xnnees for system files, 
all DOSS 

2A5F 'aGeU ooneoa for VTOS 3.0 FORMAT, 
oacKDe, etc. 

607F 1 8Ors Update for 800cySYS, all o0Sa 
782F 'BASIC Update for zxSoo[ 3.2 a 2.3 

BASIC, oaSzoa 
8130 'oVCoou ' caGoOS 2.1 a mEWo0G FORMAT, 

COPY, BASIC, oaCKup 
9643 ALL files with no password 
982r 'soamxT' Update for zasooS 2.2 & 2.3 

FORMAT 
u26I 'F3GuM raSn0S 2,1 system files 

^mV36 
a71D 'omuV ' Update for oze/GYG, all onSo 
acA8 'BACKUP ' updatm for rnGooS 2.2 a 3.3 

eaCuVp 
oo61 'L0s4 ' r000OS 2.2 a 2.3 system files 
E042 'PASSWORD' Disk password, all o0Sa 
uB29 '%mzu ' Update for system files, 

all D0Ga 
F9o5 'DLGD acoeea for nIo/sYG, all DOSS  

17.7 File Structures and Types 

Several different types  of files are stored on diskettes: 
Basic program files, object program files, system files, and 
data files. Special types of files include Editor/Assembler 
source files and Electric Pencil data fileo, File types are 
oaoaIIy indicated by the extension part of the file name 
(following the ^/^). It is always a good idea for you to use 
extensions even though they cause more typing. Standard 
extensions are "BAS" for Basic programs, "Cmo" for object 
programs, ^oa~^ for data files, ~SYS^ for system files, "xSM" 
or "sOn^ for Editor/Assembler source files, and ^ecc" for 
Electric Pencil files. 



DISK FILES 	PAGE 155 

Files are simply blocks of 256 bytes, stored in successive 
sectors of the diskette. The system software ALWAYS writes 
256 bytes at a time, meaning that it writes whatever garbage 
is left in memory in the last sector following the last byte 
that you use. Another important point is that all standard 
file types use 256-byte records, although Basic programs are 
able to read only 255 bytes because of the limitations on the 
size of Basic strings. 

(A) ASCII Basic Program Files 

Files stored in this form appear exactly as they were 
entered into memory. 	LISTing the program under the DOS 
produces the same listing as under Basic. Each line begins 
with a line number, followed by a space and the program text, 
terminating in a carriage return. Loading files stored in 
this form takes longer, because each line must undergo a 
translation process just as when you type it in. One 
advantage of ASCII Basic program files is that they can be 
read and edited by the Electric Pencil. 

(B) Binary Basic Program Files 

Most Basic programs are stored in this form, which is 
actually a dump of the way in which the program is stored in 
memory during execution. 	Line numbers are stored in two 
bytes, and each Basic key word is translated into its binary 
"token". Other items, such as variable names and strings, are 
not translated. The very first byte of the file is FFH (255). 
Following that byte, individual lines are encoded as units 
according to the following scheme: 

bytes 1-2: pointer to NEXT line number in memory 
bytes 3-4: line number, in binary (LSB/MSB) 
bytes 5-n: program text (n=last byte of text) 
byte n+l: zero. 

The end of the program is recognized by zeros in bytes 1-2 
of the line code. When combined with zero at the end of the 
previous line, they produce a series of three successive 
zeros. 

(C) Object Program Files 

Object program or command files are produced by the 
Editor/Assembler program, or transferred to the disk by the 
TAPEDISK utility or some other program like MON4. 	An object 
program is executable machine code. 	All that is necessary is 



DISK FILES 	PAGE 156 

for it to be read into the proper locations, and then for 
control to be transferred to the starting address. (For this 
reason, object programs must not be read into the portion of 
RAM occupied by the DOS, for the DOS will be bombed.) 

Object programs are loaded in blocks which have the 
following format: 

byte 1: 

byte 2: 
bytes 3-4: 

bytes 5-n: 
byte n+l: 

code for function of bytes in block: 
01 = load into address specified 
02 = entry point address 
any other value = do not load this block 

(it contains comments only) 
byte count (usually 80H or less) 
address where block loaded or control 
transferred to 
data (unused if byte 1=2) 
checksum for block 

The transfer address must be the last block in the file. 
If you do not specify an address to the Editor/Assembler 
program, this value defaults to zero. 

(D) System Files 

System files, including SYSO to SYSn as well as BOOT/SYS 
and DIR/SYS, have exactly the same format as object program 
files. (DIR/SYS has a different structure discussed in detail 
above.) 	All system files on standard diskettes have an 
extensive copyright notice at the beginning. 

(E) Editor/Assembler Source Files 

Source files to the disk version of the Editor/Assembler 
program (available on NEWDOS) use the same format as source 
tapes. Each line is stored as a separate short block. 	The 
complete format is as follows: 

byte 1 (of file): D3H 
bytes 2-7: file name, stored as succession 

of six characters padded with blanks. 
Do not rename EDTASM files! 

bytes 1-5 (of block): line number, ASCII with bit 7 
set (80H added to ASCII value). 

byte 6: blank space (20H) 
bytes 7-n: complete line statement, terminating with 

carriage return (005). Right arrow TAB 
key stored as 09H. 

last byte of file: lAH (end-of-file byte) 



DISK FILES 	PAGE 157 

(F) Electric Pencil Files 

These files are simply a string of ASCII characters with no 
special codes. Each record terminates with a carriage return, 
and the end of the file is signified by the EOF byte 00. 

(G) Data Files 

Data files have no set rules for their structure. You make 
the rules when you write the data and read it back, or when 
you use the FIELD statement in Basic. 



Zilog Tables of Z-80 Instructions 	PAGE 158 

APPENDIX A: Zilog Tables of Z-80 Instructions 

The following section gives a summary of the Z-80 instruction 
set. The instructions are logically arranged into groups as 
shown in tables 7.0-1 through 7.0-11. Each table shows the 
assembly-language mnemonic OP code, the actual OP code, the 
symbolic operation, the content of the flag register following 
the execution of each instruction, the number of bytes 
required for each instruction, as well as the number of memory 
cycles and the total number of T states' (external clock 
periods) required for the fetching and execution of each 
instruction. 



Zilog Tables of Z-80 Instructions 	PAGE 159 

Mnemonic 
Symbolic 
Operation 

Flags OP-Code No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
Cycles Comments C Z P/V S N H 76 543 210 

LD r, r' r•- r' 01 r r' 1 1 4 r, e Reg. 
LD r, n r .i- n 00 r 110 2 2 7 000 B 

+- n -. 001 C 
LD r, (HL) r ..- (HL) 01 r 110 1 2 7 010 D 
LD r, (IX+d) r +- (1X+d) 11 011 101 3 5 19 011 E 

01 r 110 100 H 
.--. d -+ 101 L 

LD r, (IY+d) r .-- (1Y+d) • • .a a a • I1 III 101 3 5 19 111 A 

01 r 110 
.- d -.. 

LD (HL), r (HL) +-. r 01 110 r 1 2 7 
LD (1X+d), r (IX+d) ..--. r 11 011 101 3 5 19 

01 110 r 
d 

LD (1Y+d), r (IY+d).- r II III 101 3 5 19 
01 110 r 
+- d .+ 

LD (HL), n (HL) ..--- n 00 110 110 2 3 10 

LD (IX+d), n (1X+d) ..- n 11 011 101 4 5 19 
00 110 110 
.- d -.. 

LD (IY+d), n (IY+d) .--, n 11 111 101 4 5 19 
00 110 110 

d 
4-- n -,. 

LD A, (BC) A +. (BC) 00 001 010 I 2 7 
LD A, (DE) A +-. (DE) 00 011 010 1 2 7 

LD A, (nn) A +- (nn) 00 1 1 1 010 3 4 13 

,-. n -,. 
LD (BC), A (BC) -i- A 00 000 010 1 2 7 
LD (DE), A (DE) ,- A 00 010 010 I 2 7 
LD (nn), A (nn) +- A 00 110 010 3 4 13 

n -, 
LD A, I A .- I • I 1FF 10 0 11 101 101 2 2 9 

01 010 1 1 1 
LD A, R A +-II • t IFF t 0 0 11 101 101 2 2 9 

01 011 111 
LD I, A 1 +- A 11 101 101 2 2 9 

01 000 1 1 1 
LD R, A R •i- A 11 101 101 2 2 9 

01 001 1 1 1 

Notes: r, r' means any of the registers A, B, C, D, E, H, L 

IFF the content of the interrupt enable flip-flop (IF F) is copied into the P/V flag 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 

t = flag is affected according to the result of the operation. 

8-BIT LOAD GROUP 



Zilog Tables of Z-80 Instructions 	PAGE 160 

Mnemonic 
Symbolic
Oera 

Flap Op-Code No. 
of 

rytes 

No. 

Zfyelles 

No. 

;ftelfes Comments C Z IV S N H 76 543 210 

LD dd, nn dd .-nn 00 dd0 001 3 3 10 dd Pair 
.- 	n 	-). 00 BC 

=- 	n 	-.. 01 DE 
LD IX, nn IX .- nn II 	Ott 	101 4 4 14 10 HI. 

00 100 001 11 SP 
ATT 	n 	— 

LD IY, nn IY .- nn 11 	III 	101 4 4 14 
00 100 001 

LD HL, (nn) H .- (nn+1) 00 101 010 3 5 16 
L .- (nn) 

LD dd, (nn) dcIH .- (nn+1) I I 	101 	101 4 6 20 
MIL .- (nn) 01 	ddl 011 

LD IX, (nn) IXH .- (nn+1) I 1011 	101 4 6 20 
IXL •-• (nn) 00 101 010 

LD IY, (nn) IY, .- (nn+1) 11 	III 	101 4 6 20 
1YL .- (nn) 00 101 010 

LD (nn), HI. (nn+1) — H 00 100 010 3 5 16 
(nn) .- L 

LD (nn),dd (nn+1) — dd, 	 II 	101 	101 4 6 20 
(nn) — ddL 01 dd0 011 

LD (nn), IX (nn+1) .- IXH 	 II 	011 	101 4 6 20 
(an).- IXL 00 100 010 

LD (nn), 1Y (nn+1) .-IYH 	 II 	III 	101 4 6 20 
(nn) .- WL 00 100 010 

LD SP, HL SP .- HL • • • • • • II 	111 00) 1 1 6 
LD SP, IX SP—IX Ii 	011 	101 2 2 10 

11 	Ill 	001 
LD SP, IY SP .- IY 11 	III 	101 2 2 10 

11 	III 	001 qq Pair 
PUSH qq (SP-2) — qqL • o o 	• • • 11 qq0 101 I 3 11 00 BC 

(SP-1).-99H 01 DE 
PUSH IX (SP-2) .- IXL 	 

(SP-1) .- 1XH 
11 011 	101 
11 	100 101 

2 4 IS 10 
11 

HL 
AF 

PUSH IY (SP-2) .- 1YL 	 11 	III 	101 2 4 15 
(SP-1) .- FIR II 	IGO 101 

POP qq qqH*- (SP+1) • • • • • • 11 qq0 001 I 3 10 

"L(SP) 
POP IX 1XH .- (SP+1) 	 11 011 	101 2 4 14 

1XL .- (SP) II 	100 001 
POP IY IYH •- (SP+1) • a • • * 	• II 	Ill 101 2 4 14 

IYL —(SP) 11 	100 001 

Notes: dd is any of the regist r pairs BC DE, HL, SP 
qq is any of the register pairs AF BC, DE, HI. 
(PAIR)H, (PAIR)L re er to high order and low order eight bits of the register pair respectively .  

Eg. BCL = C, AFH = A 

Flag Notatloor • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
flag is affected according to the result of the operation, 

16-BIT LOAD GROUP 



Mnemonic 
Symbolic 
Operation 

Flags Op-Code 
No. 
of M 
Cycles 

No. 
of T 
States Comments CZ 

P 
/ 
VS NH 76 543 210 

No. 
of 
Bytes 

EX DE, HL DE -. HL 11 101 011 1 1 4 
EX AI:. AF' AF - AF' 00 001 000 I 1 4 
EXX BC 

DE DE) 
H L' 

11 011 001 1 1 4 Registerank and 
auxiliary register 
bank exchange 

EX (SP), HL H - (SP+1) 11 100 011 I 5 19 
I ..-. ISP) 

EX (SP), IX IXH-(SP+1) 11 011 101 2 6 23 
IXL - (SP) II 100 011 

IX (SP), IY 1YH-(SP+1) 11 Ill 101 2 6 23 
IYL -(SP) II 100 011 

0 
LDI (DE).- (HL) e • 1 • 0 0 11 101 101 2 4 16 Load (HL) into 

DE - DE+ I 

HL - HL+1 
BC - BC- I 

10 100 000 (DE), increment the 
pointers and 
decrement the byte 
counter (BC) 

LDIR (DE) - (IIL) 0 • 0 0 Il 101 101 2 5 21 If BC 0 0 
DE - DE+1 10 110 000 2 4 16 If BC = 0 
HL- 11L+1 

B( - BC-I 

Repeat until 

In. =0 
(2) 

l HD WI.) - (IIL) • a 1 • 0 0 II 101 101 2 4 16 
DI - D1.-1 10 101 000 

HL - HL-1 

BC- BC-I 

IDUR (DI ) - (HI) • • (I e 0 0 11 101 101 2 5 21 IfBC0 0 
DI - DI -1 10 11 I 000 2 4 16 If BC = 0 
(IL +-111+1 

BC - B( -I 

Repeat until 

BC = 0 

0 0 
CPI A- (HL) • I 1 I I 111 101 101 2 4 16 

HL - fIL+ I 10 100 001 

B( - BC - I 

00 
UPIR A - (HI ) • I 1 I 1 1 11 101 101 2 5 21 If BC *0 and A # (HI 

III - 11L+ I 10 110 001 2 4 16 If BC = 0 or A = (HL) 
Ii( - BC-1 

Repi-at until 

A = (HU or 

BC = 0 

0 01 
( PD A - tHI.,) • t I I I I I 1 101 101 1 4 16 

Ill.-HI-I 10 101 001 
13( - BC-1 

00 
CPDR A - (111.1 • I I I I 1 II 101 101 2 5 21 'IBC* 0 and A 0 (HL 

HL - HL-I 10 III 001 2 4 16 If BC = 0 or A = (HL) 
BC - BC-I 

Repeat until 

A = (HL) or 

13( =0 

Notes: 0 P/V flag is 0 it the exult of BC-I = 0. otherwise P/V = 1 

20 Z flag is 1 if A= (HL), otherwise Z = 0, 

liag Notation: • = Ilag not affected, 0 = flag reset. I = flag set. X = lag is unknown, 

t = Ilag is affected according to the result of the operation. 

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP 



Zilog Tables of Z-80 Instructions 	PAGE 162 

Flags Op-Code 
No, 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States  CZ 

P / 
VS NH 76 543 210 

I I V I 0 I 10 1000 r 1 1 4 

I I V 1 0 I 11 10001 110 2 2 7 

II WI 10 1000 110 I 2 7 
lIV 1 0 I 11 011 101 3 5 19 

10 10001 110 
- d 

II V I 0 1 11 III 101 3 5 19 
10 10001  110 

I I V I 0 I 1001 

I I V  I 1 1 010 

1 IVIII 011 
0 1 P 1 0 1 floo) 
otPtoo Lilol 
o I P I 0 0 1_1011 
tIVI I 1 11111  
o I V 1 0 1 00 r 10(1 I I 4 
oIV/0 1 00 110 100 1 3 II 
• IV10111 011 101 3 6 21 

00 110 

otVt0111 III 101 3 6 23 
00 . 11011110 
- d 

• :vil l  loi  

Symbolic 
Mnemonic Operation 

ADD A, r A A + r 
ADD A, n A A + n 

ADD A, (HL) A+- A + (Hi) 
ADD A, (IX+d + (IX+d) 

ADD A, (IY+d A-A+(IY+d( 

ADC A, s A.-A• s+CY 
SUB s A .-- A - s 
SBC A, s A A - s -CY 
AND s A A A s 
OR s A A V s 
XOR s A A s 
CP s A - s 
INC r r r + I 
INC (HU (In) - (-11..)+ I 
INC (IX+d) (IX+d) .- 

(1X+d)+1 

INC (1Y+d) (IY+d) - 
(1Y+d) + I 

DEC m m--1 

Comments 

r Reg, 
000 
001 
010 
011 E. 
100 (I 
101 L.  
1 1 1 A 

s is any of r, n, 
(IX+d), 

(1Y+d) as shown for 
ADD instruction 

The indicated bits 
replace the 000 in 
the ADD set above. 

m is any of r, (HL), 
(IX+d(, (IY+d) as 
shown for IN(' 
Same format and 
slates as IN(' 
Replace 11)1) with 
10 I in OP Lode 

Notes: The V symbol in the P/V flag column indicates that the P)V flag contains the overflow of the result 01 (he 
operation Similarly the P symbol indicates parity. V = I means overflow. V = 0 means not overflow P = I 
means parity of the result is even, P = 0 means parity of the result is odd 

Flag Notation: o = flag not affected, 0 = flag reset, I = flag set, X = flag is unknown. 
= flag is affected according to the result of the operation 

8-BIT ARITHMETIC AND LOGICAL GROUP 



Zilog Tables of Z-80 Instructions 	PAGE 163 

Mnemonic 
Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No, 
of M 
Cycles 

No. 
of T 
States Comments C Z 

f 
E 
V S N H 76 543 210 

DAA Converts acc. 
content into 
packed BCD 
following add 
or subtract 
with packed 

t 2. P t • 1 00 100 1 1 I 1 1 4 Decimal adjust 
accumulator 

BCD operands 
CPL A .— ik • • • • 1 1 00 101 111 1 I 4 Complement 

accumulator 
(one's complemer 

NEG A ,--. 0— A IIVSIIII 101 101 2 2 8 Negate acc, (two': 
01 000 100 complement) 

CCF CY 4—CY 2 • • • 0 X 00 111 111 1 1 4 Complement cant 
flag 

SCF CY -.— 1 1 • • • 0 0 00 110 111 1 1 4 Set carry flag 

NOP No operation 00 000 000 1 1 4 

HALT CPU halted 01 110 110 I I 

DI IFF .— 0 11 110 011 1 1 

El IFF .— 1 11 111 011 1 1 

IM 0 Set interrupt 11 101 101 2 2 
mode 0 01 000 110 

IM 1 Set interrupt 11 101 101 2 
mode 1 01 010 110 

IM2 Set interrupt 11 101 101 2 2 8 
mode 2 01 011 110 

Notes: IFF indicates the interrupt enable flip-flop 
CY indicates the carry flip-flop. 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
t = flag is affected according to the result of the operation. 

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS 

t) 



Zilog Tables of Z-80 Instructions 	PAGE 164 

Mnemonic 
Symbolic 
Operation 

Flags Op-Code of 
Bytes 

of 0
71;4 

Cycles 
o
Nipi 

States Comments C Z Piv..., S N H 76 543 210 

ADD HL, ss HI, •-• HL+ as / 0 0 * 0 X 00 ssl 001 1 3 11 es Reg. 

00 BC 

ADC HL, ss HL.-.HL+ ss +CY I 1 V I 0 X 11 101 101 2 4 15 01 
10 

DE 

01 ssl 010 
HL

11 SP 
SBC HL, ss HL.-HL-ss -CY 1 I V I 1 X 11 101 101 2 4 15 

01 ss0 010 

ADD IX, pp IX +-IX + pp i ar ra a 0 X II 011 101 2 4 15 pp Reg. 
00 ppl 001 00 BC 

01 DE 
10 IX 
II SP 

ADD 1Y,rr 1Y.-.1Y+ rr / • 0 0 0 X 11 I I 1 101 2 4 15 rr Reg. 
00 rrl 001 00 BC 

01 DE 
10 IY 
II SP 

INC ss ss .- ss + 1 00 ss0 011 I 1 6 

INC IX IX .-- IX + I II 011 101 2 2 10 

00 100 011 

INC IY IY .- IY + 1 11 111 101 2 2 10 

00 100 011 

DEC ss ss .-- ss I 00 ssl 011 1 I 6 

DEC IX IX -- IX - 1 11 011 101 2 2 10 

00 101 011 

DEC IY IY +- IY 1 11 III 101 2 2 10 

00 101 011 

Notes: ss is any of the register pairs BC, DE, HL, SP 
pp is any of the register pairs BC, DE, IX, SP 
rr is any of the register pairs BC, DE, IY, SP. 

Flag Notation: e = flag not affected, 0 = flag reset, I = flag set, X = flag is unknown, 
= flag is affected according to the result of the operation.. 

16-BIT ARITHMETIC GROUP 



Comments 

Rotate left circular 
accumulator 

Rotate left 
accumulator 

Rotate right circular 
accumulator 

Rotate right 
accumulator 

Rotate left circular 
register r 

r Reg. 

000 B 
001 C 
010 D 
011 
100 H 
101 
IllA 

Rotate digit left and 
right between the 
accumulator 
and location (HL). 
The content of the 
upper half of the 
accumulator is 
unaffected 

Instruction format and 
states ale as shown 
for RLC,m. To form 
new OP-code replace 

of RLC,m with 
shown code 
loon 

Zilog Tables of Z-80 Instructions 	PAGE 165 

Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States C Z 

P 
/ 
VS NH 76 543 210 

I••• 0 0 00 000 111 1 1 4 
El 	7 0 

t • • • 0 0 00 010 111 1 1 4 M MGME 

2 • • a 0 0 00 001 111 1 I 4 iii 32 

I * • • 0 0 00 011 111 1 1 4 EC= I 

I 1 P 8 0 0 11 001 011 2 2 8 
00 000 r 

I I P S 0 0 11 001 011 2 4 15 
00 RIOT* 10 

EI 	7 .16-0 ItP10 0 11 011 101 4 6 23 
v WU, (15+01 •5•01 11 001 011 

4-- d -+ 
0010001 1 10 

1 1 P 8 0 0 11 111 101 4 6 23 
11 001 011 
+- d -+ 
ooloodllo 

I I P I 0 0 II 	111=1: 10101 
=, (IIL) (IX,I) (IM]) 

I I P 1 0 0 Foil 11:::10 
=r 1111.1.11%.d) (IY,I) 

11Pt00 1111=311 30 10111 
al •-= r OIL) IIX•d) (15+0) 

Mil 	111=113 	0 ttP100 11001 
,,,,, r OIL) (Mal OWEI) 

ME= 1M 

tn,r (111 (IX,I) (IY•d) 
1 1 Pt 0 0 Ell 

OE= la I I P 1 0 0 nil 
.I r (al) 11X -,11 (I dl 

• P t 0 0 11 101 101 
01 101 111 

2 5 18 MICIEWEIE L 
MI 

• I P 1 0 0 11 101 101 2 5 18 1111111111136111E 
01 100 111 

Mnemonic 

RLCA 

RLA 

RRCA 

RRA 

RLC r 

RLC (HL) 

RLC (1X+d) 

RLC (lY+d) 

RL m 

RRC m 

RRm 

SLAm 

SRA m 

SRLm 

RLD 

RRD 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
= flag is affected according to the result of the operation. 

ROTATE AND SHIFT GROUP 



BIT b, (IY+d) 

SET b, r 

SET b, (HL) 

SET b, (IX+d) 

SET b, (IY+d) 

RES b, m 

Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States Comments C Z 

P / 
V S N H 76 543 210 

Z ...-Tb 0 t XX 0 I 11001 011 2 2 8 r Reg. 
01 b r 000 B 

0 IXX 0 1 1 1001 011 2 3 12 001 C Z (HL)b 01 0 D 
01 b 110 011 E 

Z +- (IX d)b o t X X 0 1 11 011 101 4 5 20 100 H 
11 001 011 101 L 

4-- d -. 
111 A 

01 b 110 b Bit Tested 
Z 4- (IY+d)b 0 t X X 0 1 11 1 I 1 101 4 5 20 000 0 

11 001 011 001 1 
010 2 

d 011 3 
01 b 110 100 4 

101 5 
110 6 
I 1 1 7 

% ..-- 11 001 011 2 2 8 
Ej b r 

(HL)b •-• 1 11 001 011 2 4 15 
0 b 110 

(IX+d)b ..- 1 11 011 101 4 6 23 
11 001 011 

d 
E b 110 

(1Y+d)b II III 101 4 6 23 
11 001 011 
+- d -+ 
[1:1 b 110 

% ..- 0 III To form new OP- 

mEr, (Ht.), code replace rj 
of SET b,m with (IX+d), (IY+d) 10 Flags and time 
states for SET 
instruction 

Mnemonic 

BIT b, r 

BIT b, (HL) 

BIT b, (IX+d) 

Zilog Tables of Z-80 Instructions 
	PAGE 166 

Notes: The notation sb indicates bit b (0 to 7) or location s. 

Flag Notation: 0 = flag not affected, 0 = flag reset, I = flag set. X = flag is unknown, 
$ = flag is affected according to the result of the operation 

BIT SET, RESET AND TEST GROUP 



Zilog Tables of Z-80 Instructions 	PAGE 167 

Mnemonic 
Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States Comments C Z 

P 
/ 
V S N H 76 543 210 

JP nn PC —nn 11 000 011 3 3 10 
.- n -. 
.- n -. cc Condition 

IP cc, nn If condition c 11 cc 010 3 3 10 000 NZnon zero 
is true PC t-nn, 
otherwise 
continue 

•- n -.. 
.- --. n 

001 
010 
011 

2 zero 
NCnon carry 
C. carry 

100 PO parity odd 
101 PE parity even 
110 P sign positive 

JR e PC — PC + e 00 011 000 2 3 12 111 M sign negative 
e-2 -. 

JR C, e If C = 0, 00 I 1 1 000 2 2 7 If condition not met 
continue .- e-2 — 
If C = 1, 
PC — PC+e 

2 3 12 If condition is met 

JR NC, e If C = 1, 00 110 000 2 2 7 If condition not met 
continue .- e-2 --, 
If C = 0, 
PC .- PC + e 

2 3 12 It condition is met 

JR Z, e If 2 = 0 00 101 000 2 2 7 It condition not met 
continue .- e-2 -. 
If Z = I, 
PC ..-. PC + e 

2 3 12 It condition Is met 

JR NZ, e If Z = 1, 
continue 

00 100 000 2 2 7 It condition not mi 

If 2 = 0, 
P(' +- PC + e 

2 3 12 If condition met 

JP (HL) PC t- HL 11 101 001 I I 4 

JP (IX) PC .- IX H OH 101 2 2 8 
11 101 001 

JP (IY) PC.-IY H 111 101 2 2 8 
H 101 001 

DJNZ,e B .- B-1 00 010 000 2 2 8 If B = 0 
If B = 0, 
continue +- e-2 -. 

If B * 0, 
PC .- PC +e 

2 3 13 IF B * 0 

Notes: e represents the extension in the relative addressing mode 
e is a signed two's complement number in the range <-126, 129> 
e-2 in the op-code provides an effective address of pc +e as PC is 
incremented by 2 prior to the addition of e. 

Flag Notation: ®= flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
= flag is affected according to the result of the operation.  

JUMP GROUP 



Zilog Tables of Z-80 Instructions 	PAGE 168 

Mnemonic 
Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States Comments C 

P / 
Z V S N H 76 543 210 

CALL nn 

CALL cc, nn 

RET 

RET cc 

RETI 

RETN 

RST p 

(SP-I).--PCH 
(SP-2).-PCL 
PC.-nn 

If condition 
cc is false 
continue, 
otherwise 
same as 
CALL nn 

PCL.-(SP) 
PC .-(SP+I) 

If condition 
cc is false 
continue, 
otherwise 
same as 
RET 

Return fr 	m 
interrupt 

Return from 
non maslcable 
interrupt 
(SP-I).--PCH 
(SP-2).-PCL 
PCH.--0 
PCL..—P 

a a a a a a 

11 
.-- 
.-- 

11 
4-. 

.... 

II 

11 

II 
01 
11 
01 
11 

001 
n 
n 

cc 
n 
n 

001 

cc 

101 
001 
101 
000 

t 

101 
--.. 
--. 

100 
--. 
-.. 

001 

000 

101 
101 
101 
101 
111 

3 

3 

3 

I 

1 

1 

2 

2 

1 

5 

3 

5 

3 

1 

3 

4 

4 

3 

17 

10 

17 

10 

5 

I I 

14 

14 

11 

If cc 

If cc 

If cc 

If cc 
cc 

is false 

is true 

is false 

is true 
Condition 

000 
001 
010 
011 
100 
101 
110 
111 

t 

NZ 	non zero 
Z 	zero 
NC 	non carry 
C 	carry 
PO 	parity odd 
PE 	parity even 
P 	sign positive 
M 	sign negative 

P 
000 
001 
010 
011 
100 
101 
110 
1 l 1 

OOH 
08H 
10H 
18H 
20H 
28H 
3011 
3811 

Flag Notation: a = flag not affected, 0 = flag reset, I = flag set, X = flag is unknown 
t = flag is affected according to the result of the operation. 

CALL AND RETURN GROUP 



Zilog Tables of Z-80 Instructions 	PAGE 169 

Mnemonic 
Symbolic 
Operation 

Flags Op-Code 
No. 
of 
Bytes 

No. 
of M 
Cycles 

No. 
of T 
States Comments C Z 

P / 
V S N H 76 543 210 

IN A, (n) A ..- (n) 11 011 011 2 3 11 n to AO - A7 
.- n -. Acc to A8 - A15 

IN r, (C) r.-(C) • IFt 0 1 11 101 101 2 3 12 C to A0 - A7 
if r = 110 only 
the flags will 
be affected 

01 r 000 B to A8 - Al5 

0 
INI (HL) ..- (C) X I X X 1 X 11 101 101 2 4 16 C to A0 - A7 

B ..- B - 1 10 100 010 B to A8 - A15 
HL .- HL + 1 

INIR (HL).- (C) X 1 X X I X II 101 101 2 5 21 C to A0 - A7 
13.•-B-1 10 110 010 If B* 0) B to A8 - A15 
HL ..- HL + 1 2 4 16 
Repeat until (If B = 0) 
B = 0 

0 
IND (HL).- (C) X I X X 1 X 11 101 101 2 4 16 C to AO - A7 

B ,-B • I 10 101 010 B to A8 - Al5 
HL ..-- HL - 1 

INDR (HL).- (C) X I X X I X II 101 101 2 5 21 C to AO - A7 
B .- B - I 10 III 010 (If B * 0) B to A8 - A15 
HL 4- HL -I 2 4 16 
Repeat until 
B = 0 

(If B = 0) 

OUT (n), A (n) .- A 11 010 011 2 3 11 n to A
O 

-- A
7 4- n -+ Ace to A8 - A15 

OUT (C), r (C).-r II 101 101 2 3 12 C to AO - A7 
01 r 001 B to A8 - A15 

0 
OUTI IQ .- (HL) X 1 X X I X 1 1 101 101 2 4 16 C to AO -- A7 

B ..- B - 1 10 100 011 B to A8 - A l 5 
HI, ..- HL + 1 

°Ilk (C) .- (HL) X I X X I X 11 101 101 2 5 21 C to AO - A7 
B ..- B - I 10 110 011 (If B * 0) B to A8 - A l 5 
HL ..- HL 4. I 2 4 16 
Repeat until 
B = 0  (It B = 0) 

0 
OUTD (C).- (HL) X 1 X X 1 X I 1 101 101 2 4 16 C to AO - A7 

B ..-- B - I 10 101 011 B to A8 - A15 
HL .- HL - 1 

OIDR (Q..- (HL) X I X X I X I I 101 101 2 5 21 C to AO - A7 
13 ,-B-I 10 111 011 (If B * 0) B to A8 - A l5 
HL —HL -1 2 4 16 
Repeat until 
B = 0 (If B = 0) 

Notes: 0 If the result of B - I is zero the Z flag is set, otherwise it is reset 

Flag Notation: o = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
= flag is affected according to the result of the operation.  

INPUT AND OUTPUT GROUP 



LSD 

ASCII/Hexadecimal Conversion Table PAGE 170 

uPr8moIX a: ASCII/Hexadecimal Conversion cable 

MGo 0 l 2 3 4 5 § 7 
000 001 WlN Oil 100 101 110 ill 

0 0000 mUL oLB SPACE 0 @ P @ p 
I 0001 Soo oCl ! l & O a g 
3 0010 8zx oC2 " 2 B R b c 
3 0011 mzK oC3 # 3 C S c a 
4 0100 EOz DC4 $ 4 D T d t 
5 0101 800 wan # 5 E U e u 
6 01I0 aCK GYN a 6 F V f v 
7 0111 a8L ozo ' 7 8 Vq g w 
8 1000 BS CAN ( D H X h X 
9 1001 8T oo ) 9 I Y i y 
A 1010 Lr GOa * ; J z j z 
B 101I VT ESC + ; K up ac k up ar 
C 1100 Fr FS , < L du mc l do ac 
D I10I Cn Gs - ~ M if ac m if ar 
E 1110 SO 0s . ~ N rt ac u rt ac 
F llll SZ US / ~ O cursor 

This table shows the correspondence between ASCII characters 
and their hexadecimal values. To read the chart, take the 
most-significant digit from the top cow and the least-
significant digit from the left column. 

The following abbreviations have been used to indicate special 
functions: 

mDLc 
Start of Heading 
Start of Text 
End of Text 
End of Transmission 
Enquiry 
Acknowledge 
Bell 
Delete 
Backspace 
Horizontal rauulatioo 
Line Feed 
Vertical Tabulation 
Form Feed 
Carriage Return 
Shift out 
Shift In 

Data Link Escape 
Device Control l 
Device Control 2 
Device Control 3 
Device Control 4 
Negative Acknowledge 
Synchronous Idle 

^ End of Transmission 
Block 
Cancel 
End of medium 
Special Sequence 
Escape 

^ File Separator 
« Group Separator 
~ Record Separator 
* Unit separator 



ASCII/Hexadecimal Conversion Table 	PAGE 171 

The special functions marked with an asterisk have been given 
special meanings on the TRS-80, and hence the normal ASCII 
function is not available. 	These special meanings are as 
follows: 

Char Value Meaning 
SOH 	01 	BREAK key 
SO 	OE 	Cursor On 
SI 	OF 	Cursor Off 
ETB 	17 	32-character mode 
FS 	1C 	Home Cursor 
GS 	10 	Cursor to beginning of line 
RS 	lE 	Erase to end of line 
US 	1F 	Clear to end of screen 

In addition to these changes, it is also necessary to note 
that Radio Shack did not use standard ASCII values for the 
down arrow, left arrow, right arrow, cursor, and "shift.-@" 
keys. 



Numeric List of Z-80 Instructions 	PAGE 172 

APPENDIX 

OBJECT CODE 

C: 	Numeric List 

SOURCE 
STATEMENT 

of Z-80 	Instructions 

SOURCE 
OBJECT CODE 	STATEMENT 

00 NOP 328405 LD (NN),A 
018405 LD BC,NN 33 INC SP 
02 LD (BC),A 34 INC (HL) 
03 INC BC 35 DEC (HL) 
04 INC B 3620 LD (HL),N 
05 DEC B 37 SCF 
0620 LD B,N 382E JR C,DIS 
07 RLCA 39 ADD HL,SP 
08 EX AF,AF' 3A8405 LD A,(NN) 
09 ADD HL,BC 3B DEC SP 
OA LD A,(BC) 3C INC A 
0B DEC BC 3D DEC A 
OC INC C 3E20 LD A,N 
OD DEC C 3F CCF 
0E20 LD C,N 40 LD B,B 
OF RRCA 41 LD B,C 
102E DJNZ DIS 42 LD B,D 
118405 LD DE,NN 43 LD B,E 
12 LD (DE),A 44 LD B,H 
13 INC DE 45 LD B,L 
14 INC D 46 LD Br(HL) 
15 DEC D 47 LD B,A 
1620 LD D,N 48 LD C,B 
17 RLA 49 LD C,C 
182E JR DIS 4A LD C,D 
19 ADD HL,DE 4B LD C,E 
1A LD A,(DE) 4C LD C,H 
18 DEC DE 4D LD C,L 
1C INC E 4E LD Cr(HL) 
1D DEC E 4F LD C,A 
1E20 LD E,N 50 LD D,B 
1F RRA 51 LD D,C 
202E JR NZ,DIS 52 LD D,D 
218405 LD HL,NN 53 LD D,E 
228405 LD (NN),HL 54 LD D,H 
23 INC HL 55 LD D,L 
24 INC H 56 LD D,(HL) 
25 DEC H 57 LD D,A 
2620 LD H,N 58 LD E,B 
27 DAA 59 LD E,C 
282E JR Z,DIS 5A LD E,D 
29 ADD HL,HL 5B LD E,E 
2A8405 LD HL,(NN) 5C LD E,H 
2B DEC HL 5D LD E,L 
2C INC L 5E LD E,(HL) 
2D DEC L 5F LD E,A 
2E20 LD L,N 60 LD Hr B 
2F CPL 61 LD H,C 
302E JR NC,DIS 62 LD Hr D 
318405 LD SP,NN 63 LD H,E 



OBJECT CODE 

Numeric List of 

SOURCE 
STATEMENT 

Z-80 	Instructions 

OBJECT CODE 

PAGE 

SOURCE 
STATEMENT 

64 LD H,H 96 SUB (HL) 
65 LD H,L 97 SUB A 
66 LD H,(HL) 98 SBC A,B 
67 LD H,A 99 SBC A,C 
68 LD L,B 9A SBC A,D 
69 LD L,C 9B SBC A,E 
6A LD L,D 9C SBC A,H 
6B LD L,E 9D SBC A,L 
6C LD L,H 9E SBC A,(HL) 
6D LD L,L 9F SBC A,A 
6E LD L,(HL) AO AND B 
6F LD L,A Al AND C 
70 LD (HL),B A2 AND D 
71 LD (HL),C A3 AND E 
72 LD (HL),D A4 AND H 
73 LD (HL),E A5 AND L 
74 LD (HL) ,H A6 AND (HL) 
75 LD (HL),L A7 AND A 
76 HALT A8 XOR B 
77 LD (HL),A A9 XOR C 
78 LD A,B AA XOR D 
79 LD A,C AB XOR E 
7A LD A,D AC XOR H 
78 LD A,E AD XOR L 
7C LD A,H AE XOR (HL) 
7D LD A,L AF XOR A 
7E LD A,(HL) BO OR B 
7F LD A,A B1 OR C 
80 ADD A,B B2 OR D 
81 ADD A,C B3 OR E 
82 ADD A,D B4 OR H 
83 ADD A,E B5 OR L 
84 ADD A,H B6 OR (HL) 
85 ADD A,L B7 OR A 
86 ADD A,(HL) B8 CP B 
87 ADD A,A B9 CP C 
88 ADC A,B BA CP D 
89 ADC A,C BB CP E 
8A ADC A,D BC CP H 
88 ADC A,E BD CP L 
8C ADC A,H BE CP (HL) 
8D ADC A,L BF CP A 
8E ADC A,(HL) CO RET NZ 
8F ADC A,A Cl POP BC 
90 SUB B C28405 JP NZ,NN 
91 SUB C 038405 JP NN 
92 SUB D C48405 CALL NZ,NN 
93 SUB E C5 PUSH BC 
94 SUB H C620 ADD A,N 
95 SUB L C7 RST 0 

173 



Numeric List of Z-80 Instructions 	PAGE 174 

OBJECT CODE 
C8 
C9 
CA8405 
CBnn 
CC8405 
CD8405 
CE20 
CF 
DO 
D1 
D28405 
D320 
D48405 
D5 
D620 
D7 
D8 
D9 
DA8405 
DB20 
DC8405 
DDnnnnnn 
DE20 
DF 
EO 
El 
E28405 
E3 
E48405 
E5 
E620 
E7 
E8 
E9 
EA8405 
EB 
EC8405 
EDnnnnnn 
EE20 
EF 
FO 
Fl 
F28405 
F3 
F48405 
F5 
F620 
F7 
F8 
F9  

SOURCE 
STATEMENT 
RET 	Z 
RET 
JP 	Z,NN 
see below 
CALL Z,NN 
CALL NN 
ADC 	A,N 
RST 	8 
RET NC 
POP 	DE 
JP 	NC,NN 
OUT 	(N) ,A 
CALL NC,NN 
PUSH DE 
SUB 	N 
RST 	10H 
RET C 
EXX 
JP 	C,NN 
IN 	A, (N) 
CALL C,NN 
see below 
SBC 	A,N 
RST 	18H 
RET PO 
POP 	HL 
JP 	PO,NN 
EX 	(SP) ,HL 
CALL PO,NN 
PUSH HL 
AND N 
RST 	20H 
RET PE 
JP 	(HL) 
JP 	PE,NN 
EX 	DE,HL 
CALL PE,NN 
see below 
XOR N 
RST 	28H 
RET 	P 
POP AF 
JP 	P,NN 
DI 
CALL P,NN 
PUSH AF 
OR 
RST 	30H 
RET M 
LD 	SP,HL  

OBJECT CODE 
FA8405 
FB 
FC8405 
FDnnnnnn 
FE20 
FF 
CBOO 
CB01 
CB02 
CB03 
CB04 
CB05 
CB06 
CB07 
CB08 
CB09 
CBOA 
CBOB 
CBOC 
CBOD 
CBOE 
CBOF 
CB10 
CB11 
CB12 
CB13 
CB14 
CB15 
CB16 
CB17 
CB18 
CB19 
CB1A 
CB1B 
CB1C 
CB1D 
CB1E 
CB1F 
CB20 
CB21 
CB22 
CB23 
CB24 
CB25 
CB26 
CB27 
CB28 
CB29 
CB2A 
CB2B  

SOURCE 
STATEMENT 
JP 	M,NN 
El 
CALL M,NN 
see below 
CP 
	

N 
RST 
	

38H 
RLC 
	

B 
RLC 
	

C 
RLC 
	

D 
RLC 
RLC 
	

H 
RLC 
	

L 
RLC 
	

(HL) 
RLC A 
RRC B 
RRC C 
RRC D 
RRC 
	

E 
RRC 
	

H 
RRC 
	

L 
RRC 
	

(H 	L) 
RRC A 
RL 
	

B 
RL 
	

C 
RL 
RL 
	

E 
RL 
	

H 
RL 
	

L 
RL 
	

(H 	L) 
RL 
	

A 
RR 
	

B 
RR 
	

C 
RR 
	

D 
RR 
RR 
	

H 
RR 
	

L 
RR 
	

(HL) 
RR 
	

A 
SLA B 
SLA C 
SLA D 
SLA 
SLA 
	

H 
SLA 
	

L 
SLA 
	

(HL) 
SLA A 
SRA 
SRA 
SRA 
SRA 



Numeric List of Z-80 Instructions 
	

PAGE 175 

SOURCE 	 SOURCE 
OBJECT CODE 	STATEMENT 	OBJECT CODE 	STATEMENT 
CB2C 	SRA H 	CB66 	BIT 4,(HL) 
CB2D 	SRA L 	CB67 	BIT 4,A 
CB2E 	SRA (HL) 	CB68 	BIT 5,B 
CB2F 	SRA A 	CB69 	BIT 5,C 
CB38 	SRL B 	CB6A 	BIT 5,D 
C839 	SRL C 	CB6B 	BIT 5,E 
CB3A 	SRL D 	CB6C 	BIT 5,H 
CB3B 	SRL E 	CB6D 	BIT 5,L 
CB3C 	SRL H 	CB6E 	BIT 5,(HL) 
CB3D 	SRL L 	CB6F 	BIT 5,A 
CB3E 	SRL (HL) 	CB70 	BIT 6,B 
CB3F 	SRL A 	CB71 	BIT 6,C 
CB40 	BIT 0,B 	CB72 	BIT 6,0 
CB41 	BIT 0,C 	CB73 	BIT 6,E 
C542 	BIT 0,D 	CB74 	BIT 6,H 
CB43 	BIT 0,E 	CB75 	BIT 6,L 
C844 	BIT 0,H 	CB76 	BIT 6,(HL) 
C845 	BIT 0,L 	C877 	BIT 6,A 
CB46 	BIT 0,(HL) CB78 	BIT 7,B 
C847 	BIT 0,A 	CB79 	BIT 7,C 
CB48 	BIT 1,B 	CB7A 	BIT 7,0 
C849 	BIT 1,C 	CB7B 	BIT 7,E 
CB4A 	BIT 1,D 	CB7C 	BIT 7,H 
CB4B 	BIT 1,E 	CB7D 	BIT 7,L 
CB4C 	BIT 1,H 	CB7E 	BIT 7,(HL) 
CB4D 	BIT 1,L 	CB7F 	BIT 7,A 
CB4E 	BIT 1,(HL) CB80 	RES 0,B 
CB4F 	BIT 1,A 	CB81 	RES 0,C 
CB50 	BIT 2,B 	CB82 	RES 0,0 
CB51 	BIT 2,C 	CB83 	RES 0,E 
CB52 	BIT 2,0 	CB84 	RES 0,H 
CB53 	BIT 2,E 	CB85 	RES 0,L 
CB54 	BIT 2,H 	CB86 	RES 0,(HL) 
CB55 	BIT 2,L 	CB87 	RES 0,A 
C856 	BIT 2,(HL) CB88 	RES 1,B 
CB57 	BIT 2,A 	CB89 	RES 1,C 
CB58 	BIT 3,B 	CB8A 	RES 1,D 
CB59 	BIT 3,C 	CB8B 	RES 1,E 
CB5A 	BIT 3,D 	CB8C 	RES 1,H 
CBSB 	BIT 3,E 	CB8D 	RES 1,L 
CB5C 	BIT 3,H 	CBBE 	RES 1,(HL) 
CBSD 	BIT 3,L 	CB8F 	RES 1,A 
CBSE 	BIT 3,(HL) CB90 	RES 2,B 
CBSF 	BIT 3,A 	CB91 	RES 2,C 
CB60 	BIT 4,5 	CB92 	RES 2,D 
CB61 	BIT 4,C 	CB93 	RES 2,E 
CB62 	BIT 4,D 	CB94 	RES 2,H 
C863 	BIT 4,E 	CB95 	RES 2,L 
CB64 	BIT 4.8 	CB96 	RES 2,(HL) 
CB65 	BIT 4,L 	CB97 	RES 2,A 



OBJECT CODE 

Numeric List of 

SOURCE 
STATEMENT 

Z-80 	Instructions 

OBJECT CODE 

PAGE 

SOURCE 
STATEMENT 

CB98 RES 3,B CBCA SET 1,D 
CB99 RES 3,C CBCB SET 1,E 
CB9A RES 3,D CBCC SET 1,H 
CB9B RES 3,E CBCD SET 1,L 
CB9C RES 3,H CBCE SET 1,(HL) 
CB9D RES 3,L CBCF SET 1,A 
CB9E RES 3,(HL) CBDO SET 2,B 
CB9F RES 3,A CBD1 SET 2,C 
CBAO RES 4,B CBD2 SET 2,D 
CBA1 RES 4,C CBD3 SET 2,E 
CBA2 RES 4,D CBD4 SET 2,H 
CBA3 RES 4,E CBD5 SET 2,L 
CBA4 RES 4,H CBD6 SET 2,(HL) 
CBAS RES 4,L CBD7 SET 2,A 
CBA6 RES 4,(HL) CBDB SET 3,B 
CBA7 RES 4,A CBD9 SET 3,C 
CBA8 RES 5,B CBDA SET 3,D 
CBA9 RES 5,C CBDB SET 3,E 
CBAA RES 5,D CBDC SET 3,H 
CBAB RES 5,E CBDD SET 3,L 
CBAC RES 5,H CBDE SET 3,(HL) 
CBAD RES 5,L CBDF SET 3,A 
CBAE RES 5,(HL) CBE0 SET 4,B 
CBAF RES 5,A CBE1 SET 4,C 
CBB0 RES 6,B CBE2 SET 4,D 
CBB1 RES 6,C CBE3 SET 4,E 
CBB2 RES 6,D CBE4 SET 4,H 
CBE3 RES 6,E CBE5 SET 4,L 
CBB4 RES 6,H CBE6 SET 4,(HL) 
CBB5 RES 6,L CBE7 SET 4,A 
CBB6 RES 6,(HL) CBEB SET 5,B 
CBB7 RES 6,A CBE9 SET 5,C 
CBB8 RES 7,B CBEA SET 5,D 
CBE9 RES 7,C CBEB SET 5,E 
CBBA RES 7,D CBEC SET 5,H 
CBBB RES 7,E CBED SET 5,L 
CBBC RES 7,H CBEE SET 5,(HL) 
CBBD RES 7,L CBEF SET 5,A 
CBBE RES 7,(HL) CBF0 SET 6,B 
CBBF RES 7,A CBF1 SET 6,C 
CBCB SET 0,B CBF2 SET 6,D 
CBC1 SET 0,C CBF3 SET 6,E 
CBC2 SET 0,D CBF4 SET 6,H 
CBC3 SET 0,E CBF5 SET 6,L 
CBC4 SET 0,H CBF6 SET 6,(HL) 
CBC5 SET 0,L CBF7 SET 6,A 
CBC6 SET 0,(HL) CBF8 SET 7,B 
CBC7 SET 0,A CBF9 SET 7,C 
CBC8 SET 1,B CBFA SET 7,D 
CBC9 SET 1,C CBFB SET 7,E 

176 



Numeric 	List of 

SOURCE 

Z-80 	Instructions PAGE 

SOURCE 
OBJECT CODE STATEMENT OBJECT CODE STATEMENT 
CBFC SET 	7,8 DDCB0546 BIT 	0,(IX+IND) 
CBFD SET 	7,L DDCB054E BIT 	1,(IX+IND) 
CBFE SET 	7, (HL) DDCB0556 BIT 	2,(IX+IND) 
CBFF SET 	7,A DDC13055E BIT 	3,(IX+IND) 
DD09 ADD 	IX,BC DDCB0566 BIT 	4,(IX+IND) 
DD19 ADD 	IX,DE DDCB056E BIT 	5,(IX+IND) 
DD218405 LD 	IX,NN DDCB0576 BIT 	6,(IX+IND) 
DD228405 LD 	(NN) ,IX DDCB057E BIT 	7,(IX+IND) 
DD23 INC 	IX DDCB0586 RES 	0,(IX+IND) 
DD29 ADD 	IX,IX DDCB058E RES 	1,(IX+IND) 
DD2A8405 LD 	IX,(NN) DDCB0596 RES 	2,(IX+IND) 
DD2B DEC 	IX DDCB059E RES 	3,(IX+IND) 
DD3405 INC 	(IX+IND) DDCB05A6 RES 	4,(IX+IND) 
DD3505 DEC 	(IX+IND) DDCB05AE RES 	5,(IX+IND) 
DD360520 LD 	(IX+IND) ,N DDCB05B6 RES 	6,(IX+IND) 
DD39 ADD 	IX, SP DDCB05BE RES 	7, (IX+IND) 
DD4605 LD 	B,(IX+IND) DDCB05C6 SET 	0,(IX+IND) 
DD4E05 LD 	C,(IX+IND) DDCB05CE SET 	1,(IX+IND) 
DD5605 LD 	D,(IX+IND) DDCB05D6 SET 	2,(IX+IND) 
DD5E05 LD 	E,(IX+IND) DDCBO5DE SET 	3,(IX+IND) 
DD6605 LD 	8,(IX+IND) DDCB05E6 SET 	4,(IX+IND) 
DD6E05 LD 	L,(IX+IND) DDCBOSEE SET 	5,(IX+IND) 
DD7005 LD 	(IX+IND),B DDCB05F6 SET 	6,(IX+IND) 
DD7105 LD 	(IX+IND),C DDCB05FE SET 	7,(IX+IND) 
DD7205 LD 	(IX+IND),D ED40 IN 	B, (C) 
DD7305 LD 	(IX+IND),E ED41 OUT 	(C) ,B 
DD7405 LD 	(IX+IND),H ED42 SBC 	HL, BC 
DD7505 LD 	(IX+IND),L ED438405 LD 	(NN) ,BC 
D07705 LD 	(IX+IND),A ED44 NEG 
DD7E05 LD 	A,(IX+IND) ED45 RETN 
DD8605 ADD 	A,(IX+IND) ED46 IM 	0 
DD8E05 ADC 	A,(IX+IND) ED47 LD 	I,A 
DD9605 SUB 	(IX+IND) ED48 IN 	C, (C) 
DD9E05 SBC 	A,(IX+IND) ED49 OUT 	(C) ,C 
DDA605 AND 	(IX+IND) ED4A ADC 	HL,BC 
DDAE05 XOR 	(IX+IND) ED4B8405 LD 	BC, (NN) 
DDB605 OR 	(IX+IND) ED4D RETI 
DDBE05 CP 	(IX+IND) ED4F LD 	R,A 
DDE1 POP 	IX ED50 IN 	D, (C) 
DDE3 EX 	(SP) ,IX ED51 OUT 	(C) ,D 
DDES PUSH 	IX ED52 SBC 	HL,DE 
DDE9 JP 	(IX) ED538405 LD 	(NN) ,DE 
DDF9 LD 	SP,IX ED56 IM 	1 
DDCB0506 RLC 	(IX+IND) ED57 LD 	A,I 
DDCB050E RRC 	(IX+IND) ED58 IN 	E,(C) 
DDCB0516 RL 	(IX+IND) ED59 OUT 	(C) ,E 
DDCB051E RR 	(IX+IND) EDSA ADC 	HL,DE 
DDCB0526 SLA 	(IX+IND) ED5B8405 LD 	DE,(NN) 
DDCB052E SRA 	(IX+IND) EDSE IM 	2 
DDCB053E SRL 	(IX+IND) ED5F LD 	A, R 

177 



Numeric List of 

SOURCE 

Z-80 	Instructions PAGE 

SOURCE 
OBJECT CODE STATEMENT OBJECT CODE STATEMENT 
ED60 IN 	H,(C) FD7305 LD 	 TrY+IND),E 
ED61 OUT 	(C) ,H FD7405 LD 	(IY+IND) ,H 
ED62 SBC 	HL,HL FD7505 LD 	(IY+IND),L 
ED67 RRD FD7705 LD 	(IY+IND),A 
ED68 IN 	L,(C) FD7E05 LD 	A,(IY+IND) 
ED69 OUT 	(C),L FD8605 ADD 	A,(IY+IND) 
ED6A ADC 	HL,HL FD8E05 ADC 	A,(IY+IND) 
ED6F RLD F09605 SUB 	(IY+IND) 
ED72 SEC 	HL,SP FD9E05 SBC 	A,(IY+IND) 
ED738405 LD 	(NN) ,SP FDA605 AND 	(IY+IND) 
ED78 IN 	A,(C) FDAE05 XOR 	(IY+IND) 
ED79 OUT 	(C) ,A FDB605 OR 	(IY+IND) 
ED7A ADC 	HL,SP FDBE05 CP 	(IY+IND) 
ED7B8405 LD 	SP,(NN) FDE1 POP 	IY 
EDAO LDI FDE3 EX 	(SP) ,IY 
EDA1 CPI FDE5 PUSH 	IY 
EDA2 INI FDE9 JP 	(IT) 
EDA3 OUTI FDF9 LD 	SP,FY 
E DA8 LDD FDCB0506 RLC 	(IY+IND) 
EDA9 CPD FDCB050E RRC 	(IY+IND) 
EDAA IND FDCB0516 RL 	(IY+IND) 
EDAB OUTD FDCB051E RR 	(IY+IND) 
EDBO LDIR FDCB0526 SLA 	(IY+IND) 
EDB1 CPIR FDCB052E SRA 	(IY+IND) 
EDB2 INIR FDCB053E SRL 	(IY+IND) 
EDB3 OTIR FDCB0546 BIT 	0,(IY+IND) 
EDB8 LDDR FDCB054E BIT 	1,(IY+IND) 
EDB9 CPDR FDCB0556 BIT 	2,(IY+IND) 
EDBA INDR FDCB055E BIT 	3,(IY+IND) 
EDBB OTDR FDCB0566 BIT 	4,(IY+IND) 
FD09 ADD 	IY,BC FDCB056E BIT 	5,(IY+IND) 
FD19 ADD 	IY,DE FDCB0576 BIT 	6,(IY+IND) 
FD218405 LD 	IY,NN FDCB057E BIT 	7,(IY+IND) 
FD228405 LD 	(NN),IY FDCB0586 RES 	0,(IY+IND) 
FD23 INC 	IY FDCB058E RES 	1„(IY+IND) 
FD29 ADD 	IT,IY FDCB0596 RES 	2,(IY+IND) 
FD2A8405 LD 	IY,(NN) FDCB059E RES 	3,(IY+IND) 
FD2B DEC 	IY FDCB05A6 RES 	4,(IY+IND) 
FD3405 INC 	(IY+IND) FDCB05AE RES 	5,(IY+IND) 
FD3505 DEC 	(IY+IND) FDCB05B6 RES 	6,(IY+IND) 
FD360520 LD 	(IY+IND) ,N FDCB05BE RES 	7,(IY+IND) 
FD39 ADD 	IY,SP FDCB05C6 SET 	0,(IY+IND) 
F04605 LD 	B,(IY+IND) FDCB05CE SET 	1,(IY+IND) 
FD4E05 LD 	C,(IY+IND) FDCB0506 SET 	2,(IY+IND) 
FD5605 LD 	D,(IY+IND) FDCBO5DE SET 	3,(IY+IND) 
FD5E05 LD 	E,(IY+IND) FDCB05E6 SET 	4,(IY+IND) 
FD6605 LD 	H,(IY+IND) FDCBOSEE SET 	5,(IY+IND) 
FD6E05 LD 	L,(IY+IND) FDCBOSF6 SET 	6,(IY+IND) 
FD7005 LD 	(IY+IND),B FDCBOSFE SET 	7,(IY+IND) 
FD7105 LD 	(IY+IND) ,C 
FD7205 LD 	(IY+IND),D 

178 



Alphabetic List of Z-80 Instructions 	PAGE 179 

APPENDIX D: Alphabetic List of Z-80 Instructions 

SOURCE 	 SOURCE 
OBJECT CODE 	STATEMENT 	OBJECT CODE 	STATEMENT  
8E 	ADC A,(HL) 	DDCB0546 	BIT 0,(IX+IND) 
DD8E05 	ADC A,(IX+IND) FDCB0546 	BIT Or(IY+IND) 
FD8E05 	ADC A,(IY+IND) CB47 	BIT 0,A 
8F 	ADC A,A 	CB40 	BIT 0,B 
88 	ADC A,B 	CB41 	BIT 0,C 
89 	ADC A,C 	CB42 	BIT 0,D 
8A 	ADC A,D 	CB43 	BIT 0,E 
8B 	ADC A,E 	CB44 	BIT 0,H 
8C 	ADC A,H 	CB45 	BIT 0,L 
8D 	ADC A,L 	CB4E 	BIT 1,(HL) 
CE20 	ADC A,N 	DDCB054E 	BIT 1,(IX+IND) 
ED4A 	ADC HL,BC 	FDCB054E 	BIT 1,(IY+IND) 
ED5A 	ADC HL,DE 	CB4F 	BIT 1,A 
ED6A 	ADC HL,HL 	CB48 	BIT 1,B 
ED7A 	ADC HL,SP 	CB49 	BIT 1,C 
86 	ADD A,(HL) 	CB4A 	BIT 1,D 
D08605 	ADD A,(IX+IND) CB4B 	BIT 1,E 
F08605 	ADD A,(IY+IND) CB4C 	BIT 1,H 
87 	ADD A,A 	CB4D 	BIT 1,L 
80 	ADD A,B 	CB56 	BIT 2,(HL) 
81 	ADD A,C 	DDCB0556 	BIT 2,(IX+IND) 
82 	ADD A,D 	FDCB0556 	BIT 2,(IY+IND) 
83 	ADD A,E 	CB57 	BIT 2,A 
84 	ADD A,H 	CB50 	BIT 2,B 
85 	ADD A,L 	CB51 	BIT 2,C 
C620 	ADD A,N 	CB52 	BIT 2,0 
09 	ADD HL,BC 	CB53 	BIT 2,E 
19 	ADD HL,DE 	CB54 	BIT 2,H 
29 	ADD HL,HL 	CB55 	BIT 2,L 
39 	ADD HL,SP 	CB5E 	BIT 3,(HL) 
DD09 	ADD IX,BC 	DDCB055E 	BIT 3,(IX+IND) 
DDl9 	ADD IX,DE 	FDCB055E 	BIT 3,(IY+IND) 
DD29 	ADD IX,IX 	CB5F 	BIT 3,A 
DD39 	ADD IX,SP 	CB58 	BIT 3,B 
FD09 	ADD IY,BC 	CB59 	BIT 3,C 
FD19 	ADD IY,DE 	CB5A 	BIT 3,0 
FD29 	ADD IY,IY 	CB5B 	BIT 3,E 
FD39 	ADD IY,SP 	CBSC 	BIT 3,5 
A6 	AND (HL) 	CBSD 	BIT 3,L 
DDA605 	AND (IX+IND) CB66 	BIT 4,(HL) 
FDA605 	AND (IY+IND) DDCB0566 	BIT 4,(IX+IND) 
A7 	AND A 	FDCB0566 	BIT 4,(IY+IND) 
AO 	AND B 	CB67 	BIT 4,A 
Al 	AND C 	CB60 	BIT 4,B 
A2 	AND D 	CB61 	BIT 4,C 
A3 	AND E 	CB62 	BIT 4,D 
A4 	AND H 	CB63 	BIT 4,E 
A5 	AND L 	CB64 	BIT 4,H 
E620 	AND N 	CB65 	BIT 4,L 
CB46 	BIT 	0,(5L) 	CB6E 	BIT 	5,(HL) 



Alphabetic List of 2-80 Instructions PAGE 180 

GoUuCD SOURCE 
OBJECT CODE 	STATEMENT 	OBJECT C8o8 	STATEMENT  
ooCe056u 	BIT 5,(IX+INo) OD&9 	CPD 
roCa056C 	BIT 5,(IY+INo) Eoa9 	CpoB 
C86e 	BIT 5,A 	BDmI 	CPL 
CB68 	BIT 5,a 	Ooal 	CPI8 
Ca69 	BIT 5,C 	2F 	CPL 
Ca6A 	BIT 5,D 	27 	Dau 
CB6e 	BIT 5,E 	35 	DEC (8L) 
Ca6C 	BIT 5,8 	oo3505 	DEC (Ix+ImD) 
Co6o 	BIT 5,L 	FD3505 	DEC (IY+ImD) 
C376 	BIT 6,(uL} 	3D 	DEC & 
ooC80576 	BIT 6,(IX+Imo) 05 	DEC B 
roCa0576 	BIT 6,(IY+IND) 0a 	DEC BC 
C877 	BIT G,a 	0D 	DEC C 
C870 	BIT 6,a 	15 	DEC o 
Cs71 	BIT 6,C 	lo 	DEC DE 
C872 	BIT 5,o lo 	DEC 8 
Co73 	BIT 6,E 	25 	DEC 8 
Ca74 	BIT 6,D 	2B 	DEC 8L 
CB75 	BIT 6,L 	no2o 	DEC IX 
CB78 	BIT 7,(oL) 	Fo2n 	DEC Ty 
ooCm057m 	BIT 7,(IX+Imo) 2o 	DEC C 
cDCa0578 	BIT 7,(IY+Z0D) 3a 	DEC Se 
CB?r 	BIT ?,a 	F3 	DI 
Ca78 	BIT 7,o 	102B 	oJ0o oIS 
Ca79 	BIT 7,C 	Fa 	OI 
Ca7A 	8IT 7,o 	83 	EX (SP),8L 
Cu7u 	BIT 7,8 	000] 	8X (Se)/Ix 
CB?C BIT 7,B 	coE3 	DX (Sp),IY 
C137o 	BIT 7,L 	08 	OX aF,ax' 
uC8405 	CALL C,NN 	8a 	nx oB,8L 
FC8405 	CALL m,mm 	D9 	EXX 
o48405 	CALL NC,mm 	76 	HALT 
Co8405 	CALL NN 	uD46 	Im 0 
C48405 	CALL mz,0W 	8D56 	zm 	l 
F48405 	CALL g,Nm 	Eo5E 	zm 2 
8C8405 	CALL Po,0m 	Oo78 	IN a,(C) 
848405 	CALL pO / mm 	Da20 	IN n,m 
CC8405 	CALL x,m0 	uD40 	IN B'<C> 
3r 	oCF 	so48 	IN CI(C) 
8E 	Cg 	(HL) 	mo50 	IN 	o,(C) 
no8805 	CP (ZX+Imo) 	£o50 	IN E,(o) 
yD8E05 	CP (Iy+zmD) 	uD60 	IN 8^(C) 
BF 	CP & 8o68 	IN L,(C) 
BO 	CP e 	34 	INC (8L) 
B9 	CP C oo3405 	INC (IX+ImD) 
eu 	C9 o 	Fo3405 	INC (IY+Imn) 
BB 	CP E 	3C 	INC a 
BC CP 8 	04 	INC o 
BD 	CP c 	03 	INC BC 
rO20 CP m 	0C INC C 



OBJECT CODE 

Alphabetic List of 

SOURCE 
STATEMENT 

Z-80 Instructions 

OBJECT CODE 

PAGE 181 

SOURCE 
STATEMENT 

14 INC D FD7105 LD (IY+IND),C 
13 INC DE FD7205 LD (IY+IND),D 
1C INC E FD7305 LD (IY+IND),E 
24 INC H FD7405 LD (IY+IND),H 
23 INC HL FD7505 LD (IY+IND),L 
DD23 INC IX FD360520 LD (IY+IND),N 
FD23 INC IY 328405 LD (NN) ,A 
2C INC L ED438405 LD (NN) ,BC 
33 INC SP ED538405 LD (NN) ,DE 
EDAA IND 228405 LD (NN) ,HL 
EDBA INDR DD228405 LD (NN),IX 
EDA2 INI FD228405 LD (NN),IY 
EDB2 INIR ED738405 LD (NN) ,SP 
E9 JP (HL) 0A LD A,(BC) 
DDE9 4P (IX) lA LD A,(DE) 
FDE9 JP (IY) 7E LD A,(HL) 
DA8405 JP C,NN DD7E05 LD A,(IX+IND) 
FA8405 JP m,NN FD7E05 LD A,(IY+IND) 
D28405 JP NC,NN 3A8405 LD A,(NN) 
C38405 JP NN 7F LD A,A 
C28405 JP NZ,NN 78 LD A,B 
F28405 JP P,NN 79 LD A,C 
EA8405 JP PE,NN 7A LD A,D 
E28405 JP PO,NN 7B LD A,E 
CA8405 JP Z,NN 7C LD A,H 
382E JR DIS ED57 LD A,I 
302E JR NC,DIS 7D LD A,L 
202E JR NZ,DIS 3E20 LD A,N 
282E JR Z,DIS 46 LD B,(HL) 
02 LD (BC) ,A DD4605 LD B,(IX+IND) 
12 LD (DE) ,A FD4605 LD B,(IY+IND) 
77 LD (HL) ,A 47 LD B,A 
70 LD (HL) ,B 40 LD B,B 
71 LD (HL) ,C 41 LD B,C 
72 LD (HL) ,D 42 LD 8,0 
73 LD (HL) ,E 43 LD B,E 
74 LD (HL) ,H 44 LD D,H 
75 LD (HL) ,L 45 LD D,L 
3620 LD (HL) ,N 0620 LD B,N 
007705 LD (IX+IND) ,A ED4B8405 LD BC,(NN) 
DD7005 LD (IX+IND) ,B 018405 LD BC,NN 
DD7105 LD (IX+IND) ,C 4E LD C,(HL) 
DD7205 LD (IX+IND) ,D DD4E05 LD C,(IX+IND) 
DD7305 LD (IX+IND) ,E FD4E05 LD C,(IY+IND) 
007405 LD (IX+IND) .11 4F LD C,A 
007505 LD (IX+IND) ,L 48 LD C,B 
D0360520 LD (IX+IND) ,N 49 LD C,C 
FD7705 LD (IY+IND) ,A 4A LD C,D 
F07005 LD (IY+IND) ,B 48 LD C,E 



OBJECT CODE 

Alphabetic List of 

SOURCE 
STATEMENT 

Z-80 	Instructions 

OBJECT CODE 

PAGE 

SOURCE 
STATEMENT 

4D LD C,L 6A LD L,D 
0E20 LD C,N 6B LD L,E 
56 LD Dr(HL) 6C LD L,H 
DD5605 LD D,(IX+IND) 6D LD L,L 
FD5605 LD D,(IY+IND) 2E20 LD L,N 
57 LD D,A ED788405 LD SP,(NN) 
50 LD D,B F9 LD SP,HL 
51 LD D,C DDF9 LD SP,IX 
52 LD D,D FDF9 LD SP,IY 
53 LD D,E 318405 LD SP,NN 
54 LD D,H EDA8 LDD 
55 LD D,L EDB8 LDDR 
1620 LD D,N EDAO LDI 
ED5B8405 LD DE,(NN) EDBO LDIR 
118405 LD DE,NN ED44 NEG 
5E LD E,(HL) 00 NOP 
DD5E05 LD E,(IX+IND) B6 OR (HL) 
FD5E05 LD E,(IY+IND) DDB605 OR (IX+IND) 
5F LD E,A FDB605 OR (IY+IND) 
58 LD E,B B7 OR A 
59 LD E,C BO OR B 
5A LD E,D BI OR C 
5B LD E,E 02 OR D 
5C LD E,H B3 OR E 
5D LD E,L B4 OR H 
1E20 LD E,N 05 OR L 
66 LD Hr (HL) F620 OR N 
DD6605 LD H,(IX+IND) EDBB OTDR 
FD6605 LD ti,(IY+IND) EDB3 OTIR 
67 LD H,A ED79 OUT (C),A 
60 LD H,B ED41 OUT (C),B 
61 LD H,C ED49 OUT (C),C 
62 LD H,D ED51 OUT (C),D 
63 LD H,E ED59 OUT (C),E 
64 LD H,H ED61 OUT (C),H 
65 LD H,L ED69 OUT (C),L 
2620 LD H,N D320 OUT N,A 
2A8405 LD HL,(NN) EDAB OUTD 
218405 LD HL,NN EDA3 OUTI 
ED47 LD I,A Fl POP AF 
DD2A8405 LD IX,(NN) Cl POP BC 
DD218405 LD IX,NN D1 POP DE 
FD2A8405 LD IY,(NN) El POP HL 
FD218405 LD IY,NN DDE1 POP IX 
6E LD L,(HL) FDE1 POP TY 
DD6E05 LD L,(IX+IND) F5 PUSH AF 
FD6E05 LD L,(IY+IND) C5 PUSH BC 
6F LD L,A D5 PUSH DE 
68 LD L,B E5 PUSH HL 
69 LD L,C DDES PUSH IX 

182 



Alphabetic List of 

SOURCE 

Z-80 	Instructions PAGE 183 

SOURCE 
OBJECT CODE STATEMENT OBJECT CODE STATEMENT 
FDE5 PUSH 	IY CBAS RES 	4,L 
CB86 RES 	0,(HL) CBAE RES 	5,(HL) 
DDCB0586 RES 	0,(IX+IND) DDCB05AE RES 	5,(IX+IND) 
FDCB0596 RES 	0,(IY+IND) FDCB05AE RES 	5,(IY+IND) 
CB87 RES 	0,A CBAF RES 	5,A 
CB80 RES 	0,B CBA8 RES 	5,B 
CB81 RES 	0,C CBA9 RES 	5,C 
CB82 RES 	0,D CBAA RES 	5,D 
CB83 RES 	0,E CBAB RES 	5,E 
CB84 RES 	0,H CBAC RES 	5,H 
CB85 RES 	0,L CBAD RES 	5,L 
CB8E RES 	1, (HL) CBB6 RES 	6,(HL) 
DDCB058E RES 	1,(IX+IND) DDCB0586 RES 	6,(IX+IND) 
FDCB058E RES 	1,(IY+IND) FDCB05B6 RES 	6,(IY+IND) 
CB8F RES 	1,A CBB7 RES 	6,A 
CB88 RES 	1,8 CBBO RES 	6,B 
CB89 RES 	1,C CBB1 RES 	6,C 
CB8A RES 	1,D CBB2 RES 	6,D 
CB8B RES 	1,E 0883 RES 	6,E 
CB8C RES 	1,8 CBB4 RES 	6,H 
CB8D RES 	1,L CBBS RES 	6,L 
C896 RES 	2, (HL) CBBE RES 	7,(HL) 
DDCB0596 RES 	2,(IX+IND) DDCB05BE RES 	7,(IX+IND) 
FDCB0596 RES 	2,(IY+IND) FDCB05BE RES 	7,(IY+IND) 
C897 RES 	2,A CBBF RES 	7,A 
C890 RES 	2,8 CBB8 RES 	7,B 
C891 RES 	2,C CBB9 RES 	7,C 
CB92 RES 	2,D CBBA RES 	7,D 
CB93 RES 	2,E CBBB RES 	7,E 
C894 RES 	2,H CBBC RES 	7,H 
CB95 RES 	2,L CBBD RES 	7,L 
CB9E RES 	3, (HL) C9 RET 
DDCB059E RES 	3,(IX+IND) D8 RET 	C 
FDCB059E RES 	3,(IY+IND) F8 RET 	M 
CB9F RES 	3,A DO RET 	NC 
CB98 RES 	3,B CO RET 	NZ 
CB99 RES 	3,C FO RET 	P 
CB9A RES 	3,D E8 RET 	PE 
CB9B RES 	3,E EO RET 	PO 
CB9C RES 	3,H C8 RET 	Z 
CB9D RES 	3,L ED4D RETI 
CBA6 RES 	4, (HL) ED45 RETN 
DDCB05A6 RES 	4,(IX+IND) CB16 RL 	(HL) 
FDCB05A6 RES 	4,(IY+IND) DDCB0516 RL 	(IX+IND) 
CBA7 RES 	4,A FDCB0516 RL 	(IY+IND) 
CBAO RES 	4,8 CB17 RL 	A 
CBA1 RES 	4,C CB10 RL 
CBA2 RES 	4,D CB11 RL 
CBA3 RES 	4,E CB12 RL 
CBA4 RES 	4,H C813 RL 



Alphabetic List of 

SOURCE 

Z-80 Instructions PAGE 184 

SOURCE 
OBJECT CODE STATEMENT OBJECT CODE STATEMENT 
C814 RL 98 SBC 	A,B 
CB15 RL 99 SBC 	A,C 
17 R LA 9A SBC 	A,D 
C806 RLC 	(HL) 98 SBC 	A,E 
DDCB0506 RLC 	(IX+IND) 9C SBC 	A,H 
FDCB0506 RLC 	(IY+IND) 9D SBC 	A,L 
C807 RLC 	A DE20 SBC 	A,N 
C800 RLC 	B ED42 SBC 	HL, BC 
C801 RLC 	C ED52 SBC 	HL,DE 
C802 RLC 	D ED62 SBC 	HL,HL 
C803 RLC 	E ED72 SBC 	HL, SP 
C804 RLC 	H 37 SCF 
C805 RLC 	L CBC6 SET 	0, (HL) 
07 RLCA DDCB05C6 SET 	0,(IX+IND) 
ED6F R LD FDCB05C6 SET 0,(IY+IND) 
CB1E RR 	(HL) CBC7 SET 0,A 
DDCB051E RR 	(IX+IND) CBCO SET 0,B 
FDCB051E RR 	(IY+IND) CBC1 SET 0,C 
CB1F RR 	A CBC2 SET 0,D 
CB18 RR CBC3 SET 	0,E 
CB19 RR CBC4 SET 	0,H 
CB1A RR CBC5 SET 	0,L 
CB1B RR CBCE SET 	1, (HL) 
CB1C RR DDCB05CE SET 	1,(IX+IND) 
CB1D RR FDCB05CE SET 	1,(IY+IND) 
1F RRA CBCF SET 1,A 
CBOE RRC 	(HL) CBC8 SET 1,B 
DDC8050E RRC 	(IX+IND) CBC9 SET 1,C 
FDCB050E RRC 	(IY+IND) CBCA SET 1,D 
CBOF RRC 	A CBCB SET 1,E 
C808 RRC 	B CBCC SET 1,H 
C809 RRC 	C CBCD SET 1,L 
CBOA RRC 	D CBD6 SET 2, (HL) 
C8OB RRC 	E DDCB0506 SET 2,(IX+IND) 
CBOC RRC 	H FDCBO5D6 SET 2,(IY+ID) 
CBOD RRC 	L CBD7 SET 2,A 
OF RRCA CBDO SET 2,B 
ED67 RRD CBD1 SET 2,C 
C7 RST 	0 CBD2 SET 2,D 
CF RST 	08H CBD3 SET 2,E 
D7 RST 	10H CBD4 SET 	2,H 
DF RST 	18H CBD5 SET 	2,L 
E7 RST 	20H CBDE SET 	3, (HL) 
EF RST 	28H DDCBO5DE SET 	3,(IX+IND) 
F7 RST 	30H FDCBO5DE SET 	3,(IY+IND) 
FF RST 	38H CBDF SET 	3,A 
9E SBC 	A,(HL) CBD8 SET 	3,B 
DD9E05 SBC 	A,(IX+IND) CBD9 SET 	3,C 
FD9E05 SBC 	A,(IY+IND) CBDA SET 	3,D 
9F SBC 	A,A CBDB SET 	3,E 



Alphabetic List of 

SOURCE 

Z-80 Instructions PAGE 

SOURCE 
OBJECT CODE STATEMENT OBJECT CODE STATEMENT 
C BDC SET 	3,H CB24 SLA 	H 
CBDD SET 	3,L CB25 SLA 	L 
CBE6 SET 	4,(HL) CB2E SRA 	(HL) 
DDCB05E6 SET 	4,(IX+IND) DDCB052E SRA 	(IX+IND) 
FDCB05E6 SET 	4,(IY+IND) FDCB052E SRA 	(IY+IND) 
CBE7 SET 	4,A CB2F SRA 	A 
CBEO SET 	4,B CB28 SRA 	B 
CBE1 SET 	4,C CB29 SRA 	C 
CBE2 SET 	4,D CB2A SRA 	D 
CBE3 SET 	4,E CB2B SRA 	E 
CBE4 SET 	4,H CB2C SRA 	H 
CBES SET 	4,L CB2D SRA 	L 
CBEE SET 	5,(HL) CB3E SRL 	(HL) 
DDCBOHE SET 	5,(IX+IND) DDCB053E SRL 	(IX+IND) 
FDCBOHE SET 	5,(IY+IND) FDCB053E SRL 	(IY+IND) 
CBEF SET 	5,A CB3F SRL 	A 
CBE8 SET 	5,B CB38 SRL 	B 
CBE9 SET 	5,C CB39 SRL 	C 
CBEA SET 	5,D CB3A SRL 	D 
CBEB SET 	5,E CB3B SRL 	E 
CBEC SET 	5,H CB3C SRL 	H 
CBED SET 	5,L CB3D SRL 	L 
CBF6 SET 	6,(HL) 96 SUB 	(HL) 
DDCBO5F6 SET 	6,(IX+IND) D09605 SUB 	(IX+IND) 
FDCB05F6 SET 	6,(IY+IND) F09605 SUB 	(IY+IND) 
CBF7 SET 	6,A 97 SUB 	A 
CBFO SET 	6,B 90 SUB 	B 
CBF1 SET 	6,C 91 SUB 	C 
CBF2 SET 	6,D 92 SUB 	D 
CBF3 SET 	6,E 93 SUB 	E 
CBF4 SET 	6,H 94 SUB 	H 
CBF5 SET 	6,L 95 SUB 	L 
CBFE SET 	7,(HL) D620 SUB 	N 
DDCBOSFE SET 	7,(IX+IND) AE XOR 	(HL) 
FDCB05FE SET 	7,(IY+IND) DDAE05 XOR 	(IX+IND) 
CBFF SET 	7,A FDAE05 XOR 	(IY+IND) 
CBF8 SET 	7,B AF XOR 	A 
CBF9 SET 	7,C A8 XOR 	B 
CBFA SET 	7,D A9 XOR 	C 
CBFB SET 	7,E AA XOR 	D 
CBFC SET 	7,H AB XOR 	E 
CBFD SET 	7,L AC XOR 	H 
CB26 SLA 	(HL) AD XOR 	L 
DDCB0526 SLA 	(IX+IND) EE20 XOR 	N 
FDCB0526 SLA 	(IY+IND) 
CB27 SLA 	A 
CB20 SLA 	B 
CB21 SLA 	C 
CB22 SLA 	D 
CB23 SLA 	E 

185 



Selected Bibliography 	p&GO 186 

Appendix o; Selected Bibliography 

Radio Shack Reference Manuals: 

LEVEL II BASIC REFERENCE MANUAL. 

ToSDOS a DISK a&GZC REFERENCE MANUAL (Catalog Number 
2h-2l04). 

EDITOR/ASSEMBLER VGOa INSTRUCTION MANUAL (Catalog Number 
3G-2002). 

Above are all published by Radio Shack, a division of Tandy 
Corporation, Fort Worth, Texas 76102. 

o-80 Assembly-language programming: 

TRG-80 &GGBmmLY-LaNGVaGO PROGRAMMING by William Barden, Jr. 
Published by Radio Shack (Catalog Number 63-2006). 

THE u-80 MICROCOMPUTER Ba0oB0OK by William Barden, Jr. Howard 
W. Gams a Co., Inc., 4300 West 62nd Street, Indianapolis, 
Indiana 46368. 

PRACTICAL MICROCOMPUTER BlOG8aMmI0G; THE %80 by W. J. Weller. 
Northern Technology Books, Box 62, Evanston, Illinois 60204. 

TRS-80 technical information: 

MICRO APPLICATIONS TRS-80 DISC INTERFACING GUIDE by William 
Barden, Jr. 	Micro Applications, 24232 Tahoe Court, Laguna 
Niguel, California 92677. 

TaS-80 DISK a OTHER MYSTERIES by H. C. Pennington. Published 
by IJG Inc., 569 North Mountain Avenue, Upland, California 
91786. 

T8G-80 6UPOaMaP by Fuller Software, 630 East Springdale, Grand 
Prairie, Texas 75051. 

DISASSEMBLED HANDBOOK FOgTRS-80 (two volumes). 	ninhcraft 
Engineering Ltd., Drawer 1065, Chautauqua, New York 14722. 





PERSONAL COMPUTERS 

TRS-80 
Assembly 
Language 
Hubert S.Howek. 

Now for both the first-time user as well as expe-
rienced users of the TRS-80 microcomputer, here is a 
book that explains assembly language programming 
in a thorough, yet easy-to-understand style. TRS-80 
Assembly Language contains all of the information 
you need in order to develop machine language 
programs.  

In this book you will find: 
clear presentations of all introductory concepts 

in the use of the TRS-80 
completely tested practical programs and subroutine$ 

details of ROM, RAM, and disk operating systems 
comprehensive tables, charts, and appendices 

and much more! 

TRS-80 Assembly Language incorporates into a 
single volume all the pertinent facts and information 
you need to know to program and enjoy the TRS-80 
microcomputer. 

Hubert S. Howe, Jr., is an Associate Professor at 
Queens College of the City University of New York. He 
specializes in the subject of electronic music.  

Prentice-Hall, Inc. 
Englewood Cliffs, New Jersey 07632 

0-13-931121 1 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196

